
References

Model Ben Collins-Sussman

Syntax Repositories addresses are urls Brian W. Fitzpatrick

C. Machael Pilato

Working Copies

svn commit button.c -m "Fixed a typo in button.c."

Revisions

Show state Of a working item svn status

Principle

History

Examine Mixture

This cheatsheet is basically a compilation of reference [1]

Example:

Locally changed,

and current

The ability to have a working copy containing files and directories with a mix of different working revision numbers.

Mixed Revisions Working Copies

Unchanged, and

out of date

The file has not been changed in the working directory, but it has been changed in the repository. The file might be updated to make it current to last rev.

An 'svn commit' of the file will do nothing, and an 'svn update' of the file will fold the latest changes into your working copy.

The file has been changed both in the working directory and in the repository.

An 'svn commit' of the file will fail with an “out-of-date” error. The file should be updated first.

an 'svn update' command will attempt to merge the public changes with the local changes.

If Subversion can't complete the merge in a plausible way automatically, it leaves it to the user to resolve the conflict.

Locally changed,

and out of date

This command will show you the state of any item in your working copy.

Updates and

Commits

svn status --verbose

svn logHistory of

Changes

Only by running svn update can the latest changes be downloaded and the whole working copy be marked as revision 15.

The rest of the working copy remains at revision 10.

The only safe thing the Subversion client can do is mark the one file—foo.html—as being at revision 15.

You haven't tun 'svn update' and 'svn commit' do NOT pull the changes between 10 and 15 revisions.

Working Copy isn't at revision 15!! (any number of changes might have happened in the repository between revisions 10 and 15.)

This creates a version 15 (for example) in the repositoryYou edit foo.html and perform 'svn commit'

A "push" action does not cause a "pull", nor vice versa.

If you have new changes still in progress, 'svn update' should gracefully merge repository changes into your own, rather than forcing you to publish them.

This command will display the history of changes to a file or directory.

Examine the detail of mixture of different versions

You have a working copy entirely at revision 10

States of a

working file

Unchanged and

current

The file is unchanged in the working directory, and no changes to that file have been committed to the repository since its working revision.

An 'svn commit' of the file will do nothing, and an 'svn update' of the file will do nothing.

The file has been changed in the working directory, and no changes to that file have been committed to the repository since you last updated.

Thus an 'svn commit' of the file will succeed in publishing your changes, and an 'svn update' of the file will do nothing.

This is called the file's working revision

Definition

Each time the repository accepts a commit, this creates a new state of the filesystem tree, called a revision.

Each revision is assigned
a unique natural number, one greater than the number of the previous revision.

The initial revision of a freshly created repository is numbered 0 and consists of nothing but an empty root directory.

Subversion's revision numbers apply to entire trees, not individual files.

How Working Copies Track the Repository

A timestamp recording when the local copy was last updated by the repository

What revision your working file is based on.svn directory

keeps track of

For each file in a

directory

svn update

Copy-Modify-Merge

You must commit

your changes

Publish your

changes

You must update

your working copy

Bring your

project up to

date

Summary of the command and the revision checked out.

'A' means subversion adding an item to your working copy

Committed revision 57.

Transmitting file data .

Sending button.c

Subversion commiting your changes to the reporitory

-m send a description of your changes.

You must check out

some sobtree of

the repository

Get a working

copy

U button.c

Updated to revision 57. Summary of the command and the updated revision.

File(s) being updated

svn checkout http://svn.example.com/repos/calc

Checked out revision 56.

A calc/button.c

A calc/integer.c

A calc/Makefile

Extra files .svn directory

Working Copy

administrative

directory
A typical working copy usually corresponds to a particular subtree of the respository, because a repository usually contains many projects

Help Subversion keep track of changes

Each directory of the cworking copy contains one

Created and maintained by Subversion

Version Control with Subversion[1] http://svnbook.red-bean.com/

Things to take in account about SVN

Definition

Subversion provide commands to "publish" your changes or to merge others' changes into your working copy by reading the repository.

Subversion will never incorporate other people's changes, nor make your own changes available to others, until you explicitly tell it to do so.

You can work with these files exactly as if there were just local.

Is a local copy of the repository, in the form of an ordinary directory tree on the local file system.

http://svnbook.red-bean.com/

Initial checkout

Getting Data into your repository

A quick way to copy an unversioned tree of files into a repository, creating intermediate directories as necessary.

This command doesn't require a working copy, and your files are immediately committed to the repository.

Basic Working Cycle

svn add <foo>

svn delete <foo>

svn copy <foo> <bar>

svn move <foo> <bar>

svn mkdir <blort>

A

C

D

M

Column #2

Column #3

Column #4

svn diff

svn resolve --accept [arg] <item>

base

mine-full

theirs-full

working

"Message"

File

6.- Commit your changes

svn commit [-m "Message" | -f File] The svn commit command sends all of your changes to the repository.

A log message for yoour changes

A file where the log message is taken from

checkout

svn chekout <url> [directory]

The copy contains the HEAD (latest version) of the subversion repository specified in the url.

You can checkout the main trunk or a subdirectory of it.

You can specify a directory where subversion will put the trunk

5.- Resolve conflicts

Reverts item to its premodified state, including any operation (addition, copy, etc.)

svn import

import

4.- [undo some working changes]

You can make file changes or tree changes

Schedule file, directory, or symbolic link foo to be added to the repository.

Schedule file, directory, or symbolic link foo to be deleted from the repository.

Create a new item bar as a duplicate of foo and automatically schedule bar for addition.

1.- Update your working copy svn update

svn help update

Bring your working copy into sync with the latest revision in the repository

Help on the update command

Receive other's changes

The file item is in a state of conflict. Changes received from the server during an update overlap with local changes that you have in your working copy.

The file, directory, or symbolic link item has been scheduled for deletion from the repository.

To edit a file you don't need to type any command

The verbose (-v) option will show you the status of every item of your working copy, even if it hasn't changed.

This command is exactly the same as running svn copy foo bar; svn delete foo.

This command is exactly the same as running mkdir blort; svn add blort.

Get an overview of your changes. The results of this command are relative to your current directory

First results column: status of a file or directory

The file, directory, or symbolic link item has been scheduled for addition into the repository.

filename.mine

filename.rOLDREV

2.- Make changes

3.- Examine your changes

svn status [-v] [-u] [<path>]

svn revert <item>

Working revision of the item

The revision in which the item was last changed

Who changed it

You can generate a patch by redirecting the output to a patch file (usable by patch command)

The show-updates option (-u) contacts the repository and adds information about thing that are out of date

Examine the details of your local modifications, printing them in unified diff format.

The contents of the file item have been modified.

This is your file as it existed in your working copy before you updated your working copy.

 If Subversion considers the file to be unmergeable, the .mine file isn't created)

This was the BASE file revision before you updated your working copy (the one that you checked out before you made your edits)

The file that your svn client just received from the server when you updated your working copy (= repository's HEAD revision)

When conflicts appear, 'svn update' command presents some options

(p) postpone

(df) diff-full

(e) edit

(r) resolved

(mf) mine-full

(tf) theirs-full

(l) launch

(h) help

For every postponed conflicted file, Subversion places three extra unversioned files in your working copy:

filename.rNEWREV

Merge the conflicted text “by hand”, by editing your working copy

Resolves the conflicts found in <item> as you specify and removes the three versions of the item

Where 'arg'

To choose the version of the file that you last checked out before making your edits.

To choose the version that contains only your edits

To choose the version that your most recent update pulled from the server (and thus discarding your edits entirely)

