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Web Authentication, Session Management, and Access Control

A web session is a sequence of network HTTP request and response transactions associated to the same
user. Modern and complex web applications require to retain information or status about each user for
the duration of multiple requests, therefore, sessions provide the ability to establish variables, such as
access rights and localization settings, which will apply to every and each interaction a user has with the
web application for the duration of the session.

Web applications can create sessions to keep track of anonymous users since the very first user request,
for example, to maintain the user language preference. Additionally, web applications will make use of
sessions once the user has authenticated in order to identify the user on any subsequent requests and
be able to apply security access controls, grant access to the user private data, and increase the usability
of the application. Therefore, current web applications can provide session capabilities both pre and
post authentication.

Once an authenticated session has been established, the session ID (or token) is temporarily equivalent
to the strongest authentication method used by the application, such as username and password,
passphrases, one-time passwords (OTP), client-based digital certificates, smartcards, or biometrics (such
as fingerprint or eye retina). See the OWASP Authentication Cheat Sheet:
https://www.owasp.org/index.php/Authentication Cheat Sheet.

HTTP is a stateless protocol (RFC2616 [5]), where each request and response pair is independent of
other web interactions, therefore, in order to introduce the concept of a session it is required to
implement session management capabilities that link both the authentication and access control (or
authorization) modules commonly available in web applications:

18S-=- 8

The session ID or token binds the user authentication credentials (in the form of a user session) to the
user HTTP traffic and the appropriate access controls enforced by the web application. The complexity
of these three components (authentication, session management, and access control) in modern web
applications, plus the fact that its implementation and binding resides on the web developer’s hands (as
web development framework do not provide strict relationships between these modules), makes the
implementation of a secure session management module very challenging.

The disclosure, capture, prediction, brute force, or fixation of the session ID will lead to session hijacking
(or sidejacking) attacks, where an attacker is able to fully impersonate a victim user in the web
application. Attackers can perform two types of session hijacking attacks, targeted or generic. On a
targeted attack, the attacker’s goal is to impersonate a specific (or privileged) web application victim
user, while in generic attacks, the attacker’s goal is to impersonate (or get access as) any valid or
legitimate user in the web application.

Copyright © 2011 Taddong S.L. www.taddong.com 2
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Session ID Properties

In order to keep the authenticated state and track the users progress within the web application,
applications provide users with a session identifier (session ID or token) that is assigned at session
creation time, and is shared and exchanged by the user and the web application for the duration of the
session (it is sent on every HTTP request). The session ID is a “name=value” pair.

With the goal of implementing secure session IDs, the generation of identifiers (IDs or tokens) must
meet the following properties:

Session ID Name Fingerprinting
The name used by the session ID shouldn’t be extremely descriptive and offer unnecessary details about
the purpose and meaning of the ID.

The session ID names used by the most common web application development frameworks can be
easily fingerprinted [0], such as PHPSESSID (PHP), JSESSIONID (J2EE), CFID & CFTOKEN (ColdFusion),
ASP.NET_Sessionld (ASP .NET), etc. Therefore, the session ID name can disclose the technologies and
programming languages used by the web application.

It is recommended to change the default session ID name of the web development framework by a
generic name, such as “id”.

Session ID Length
The session ID must be long enough to prevent brute force attacks, where an attacker can go through
the whole range of ID values and verify the existence of valid sessions.

The session ID length must be at least 128 bits (16 bytes).

Session ID Entropy

The session ID must be unpredictable (random enough) to prevent guessing attacks, where an attacker
is able to guess or predict the ID of a valid session through statistical analysis techniques. For this
purpose, a good PRNG (Pseudo Random Number Generator) must be used.

The session ID value must provide at least 64 bits of entropy (if a good PRNG is used, this value is
estimated to be half the length of the session ID).

NOTE: The session ID entropy is really affected by other external and difficult to measure factors, such as
the number of concurrent active sessions the web application commonly has, the absolute session
expiration timeout, the amount of session ID guesses per second the attacker can make and the target
web application can support, etc [2].

If a session ID with an entropy of 64 bits is used, it will take an attacker at least 292 years to successfully
guess a valid session ID, assuming the attacker can try 10,000 guesses per second with 100,000 valid
simultaneous sessions available in the web application [2].

Session ID Content (or Value)

The session ID content (or value) must be meaningless to prevent information disclosure attacks, where
an attacker is able to decode the contents of the ID and extract details of the user, the session, or the
inner workings of the web application.

Copyright © 2011 Taddong S.L. www.taddong.com 3
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The session ID must simply be an identifier on the client side, and its value must never include sensitive
information (or PIl). The meaning and business or application logic associated to the session ID must be
stored on the server side, and specifically, in session objects or in a session management database or
repository. The stored information can include the client IP address, User-Agent, e-mail, username, user
ID, role, privilege level, access rights, language preferences, account ID, current state, last login, session
timeouts, and other internal session details. If the session objects and properties contain sensitive
information, such as credit card numbers, it is required to duly encrypt and protect the session
management repository.

It is recommended to create cryptographically strong session IDs through the usage of cryptographic
hash functions such as SHA1 (160 bits).

Session Management Implementation

The session management implementation defines the exchange mechanism that will be used between
the user and the web application to share and continuously exchange the session ID. There are multiple
mechanisms available in HTTP to maintain session state within web applications, such as cookies
(standard HTTP header), URL parameters (URL rewritting — RFC 2396), URL arguments on GET requests,
body arguments on POST request, such as hidden form fields (HTML forms), or proprietary HTTP
headers.

The preferred session ID exchange mechanism should allow to define advanced token properties, such
as the token expiration date and time, or granular usage constraints. This is one of the reasons why
cookies (RFCs 2109 & 2965 & 6265 [1]) are one of the most extensively used session ID exchange
mechanisms, offering advanced capabilities not available in other methods.

The usage of specific session ID exchange mechanisms, such as those where the ID is included in the
URL, might disclose the session ID (in web links and logs, web browser history and bookmarks, the
Referer header or search engines), as well as facilitate other attacks, such as the manipulation of the ID
or session fixation attacks [3].

Built-in Session Management Implementations

Web development frameworks, such as J2EE, ASP .NET, PHP, and others, provide their own session
management features and associated implementation. It is recommended to use these built-in
frameworks versus building a home made one from scratch, as they are used worldwide on multiple
web environments and have been tested by the web application security and development communities
over time.

However, be advised that these frameworks have also presented vulnerabilities and weaknesses in the
past, so it is always recommended to use the latest version available, that potentially fixes all the well-

known vulnerabilities, as well as review and change the default configuration to enhance its security by
following the recommendations described along this document.

The storage capabilities or repository used by the session management mechanism to temporarily save
the session IDs must be secure, protecting the session IDs against local or remote accidental disclosure
or unauthorized access.

Copyright © 2011 Taddong S.L. www.taddong.com 4
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Used vs. Accepted Session ID Exchange Mechanisms

A specific web application can make use of a particular session ID exchange mechanism by default, such
as cookies. However, if a user submits a session ID through a different exchange mechanism, such as a
URL parameter, the web application might accept it. Effectively, the web application can use both
mechanisms, cookies or URL parameters, or even switch from one to the other (automatic URL
rewriting) if certain conditions are met (for example, the existence of web clients without cookies
support or if cookies are not accepted due to user privacy concerns).

For this reason, it is crucial to differentiate between the mechanisms used by the web application (by
default) to exchange session IDs and the mechanisms accepted by the web application to process and
manage session IDs. Web applications must limit the accepted session tracking mechanisms to only
those selected and used by design.

Transport Layer Security

In order to protect the session ID exchange from active eavesdropping and passive disclosure in the
network traffic, it is mandatory to use an encrypted HTTPS (SSL/TLS) connection for the whole web
session, not only for the authentication process where the user credentials are exchanged.

Additionally, the “Secure” cookie attribute (see below) must be used to ensure the session ID is only
exchanged through an encrypted channel. The usage of an encrypted communication channel also
protects the session against some session fixation attacks where the attacker is able to intercept and
manipulate the web traffic to inject (or fix) the session ID on the victim web browser [4].

The following set of HTTPS (SSL/TLS) best practices are focused on protecting the session ID (specifically
when cookies are used) and helping with the integration of HTTPS within the web application:

* Web applications should never switch a given session from HTTP to HTTPS, or viceversa, as this
will disclose the session ID in the clear through the network.

* Web applications should not mix encrypted and unencrypted contents (HTML pages, images,
CSS, Javascript files, etc) on the same host (or even domain - see the “domain” cookie attribute),
as the request of any web object over an unencrypted channel might disclose the session ID.

* Web applications, in general, should not offer public unencrypted contents and private
encrypted contents from the same host. It is recommended to use two different hosts instead,
such as www.example.com over HTTP (unencrypted) for the public contents, and
secure.example.com over HTTPS (encrypted) for the private and sensitive contents (where
sessions exist). The former host only has port TCP/80 open, while the later only has port
TCP/443 open.

* Web applications should avoid the extremely common HTTP to HTTPS redirection on the home
page (using a 30x HTTP response), as this single unprotected HTTP request/response exchange
can be used by an attacker to gather (or fix) a valid session ID.

See the OWASP Transport Layer Protection Cheat Sheet:
https://www.owasp.org/index.php/Transport Layer Protection Cheat Sheet.

It is important to emphasize that SSL/TLS (HTTPS) does not protect against session ID prediction, brute
force, client-side tampering or fixation, but session ID disclosure and capture from the network traffic,
one of the most prevalent attack vectors still today.
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Cookies
The session ID exchange mechanism based on cookies provides multiple security features in the form of
cookie attributes that can be used to protect the exchange of the session ID:

Secure Attribute

The “Secure” cookie attribute instructs web browsers to only send the cookie through an encrypted
HTTPS (SSL/TLS) connection. This session protection mechanism is mandatory to prevent the disclosure
of the session ID through MitM (Man-in-the-Middle) attacks. An attacker can simply capture the web
browser traffic that contains the session ID.

Even the fact that the web application is only using HTTPS for its communication (even when port
TCP/80, HTTP, is closed in the web application host) does not protect against the session ID disclosure if
the “Secure” cookie has not been set, as the web browser can be deceived to disclose the session ID
over an unencrypted HTTP connection. The attacker can intercept and manipulate the victim user traffic
and inject an HTTP unencrypted reference to the web application that will force the web browser to
submit the session ID in the clear.

HttpOnly Attribute

The “HttpOnly” cookie attribute instructs web browsers not to allow scripts (e.g. Javascript or VBscript)
to be able to access the cookies via the DOM document.cookie object. This session ID protection is
mandatory to prevent session ID stealing through XSS attacks.

See the OWASP XSS Prevention Cheat Sheet:
https://www.owasp.org/index.php/XSS (Cross Site Scripting) Prevention Cheat Sheet.

Domain and Path Attributes

The “Domain” cookie attribute instructs web browsers to only send the cookie to the specified domain
and all subdomains. If the attribute is not set, by default the cookie will only be sent to the origin server.
The “Path” cookie attribute instructs web browsers to only send the cookie to the specified directory or
subdirectories (or paths or resources) within the web application. If the attribute is not set, by default
the cookie will only be sent for the directory (or path) of the resource requested and setting the cookie.

)

It is recommended to use a narrow or restricted scope for these two attributes, therefore, the “Domain’
attribute should not be set (restricting the cookie just to the origin server) and the “Path” attribute
should be set as restrictive as possible to the web application path that makes use of the session ID.

Setting the “Domain” attribute to a too permisive value, such as “example.com” allows an attacker to
launch attacks on the session IDs between different hosts and web applications belonging to the same
domain, known as cross-subdomain cookies. For example, vulnerabilities in www.example.com might
allow an attacker to get access to the session IDs from secure.example.com.

Additionally, it is recommended not to mix web applications of different security levels on the same
domain, as vulnerabilities in one of the web applications would allow an attacker to set the session ID
for a different web application on the same domain by using a permisive “Domain” attribute, such as
“example.com”, a technique that can be used in session fixation attacks [4].

Although the “Path” attribute allows to isolate session IDs between different web applications using
different paths on the same host, it is highly recommended not to run different web applications
(especially from different security levels or scopes) on the same host, as other methods can be used by
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these applications to access the session IDs, such as the “document.cookie” object, plus the fact that
any web application can set cookies for any path on that host.

Cookies are vulnerable to DNS spoofing/hijacking/poisoning attacks, where an attacker can manipulate
the DNS resolution to force the web browser to disclose the session ID for a given host or domain.

Expire and Max-Age Attributes

Session management mechanisms based on cookies can make use of two types of cookies, non-
persistent (or session) cookies, and persistent cookies. If a cookie presents the “Max-Age” (that has
preference over “Expires”) or “Expires” attributes, it will be considered a persistent cookie and will be
stored on disk by the web browser based on the expiration time. Tipically, session management
capabilities to track users after authentication make use of non-persistent cookies, forcing the session to
disappear from the client if the current web browser instance is closed. Therefore, it is highly
recommended to use non-persistent cookies for session management purposes, so that the session ID
does not remain on the web client cache for long periods of time, from where an attacker can obtain it.

Implications of Cookies in Other Web-Based Vulnerabilities

CSRF

The usage of cookies as the session ID exchange mechanim makes web applications vulnerable to Cross-
Site Request Forgery (CSRF) attacks, as the existence of an automatic session management mechanism
(aka “ambient authority”) allows to get a continuous and transparent authorized access to the web
application (aka “session ridding”).

Other session ID exchange mechanisms do not present this behaviour, such as session IDs exchanged
through the URL, where the secret URL (containing the session ID) is not automatically send and thus
acts as the authorization mechanism (although these mechanisms present other issues, such as
information disclosure). See the OWASP CSRF Prevention Cheat Sheet:
https://www.owasp.org/index.php/Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet.

Cross-Site Tracing (XST)

The usage of cookies as the session ID exchange mechanim makes web applications the target for the
exploitation of Cross-Site Tracing (XST) vulnerabilities, where an attacker tries to get access to the
cookies from the response of the HTTP TRACE method. The HTTP TRACE method response includes the
full client request as the web server received it, including all HTTP headers and therefore, the session ID
in the cookie header. It is highly recommended to disable the HTTP TRACE method in the web server.

Most modern web browsers do not allow neither the usage of the TRACE method through the Javascript
XMLHTTPRequest (XHR) object (to avoid effective XST attacks), nor direct access to the cookie headers
(“Set-Cookie”) from the XMLHTTPRequest object responses.

HTTP Response Splitting

The usage of cookies as the session ID exchange mechanim makes web applications the target for the
exploitation of HTTP response splitting (or CRLF injection) vulnerabilities, where an attacker can inject
end of line characters (CR or LF or CRLF) in specific web application input fields to add his own cookie
headers, an effective technique for session fixation attacks [4].

Copyright © 2011 Taddong S.L. www.taddong.com 7
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Session ID Life Cycle

Session ID Generation and Verification: Permissive and Strict Session Management
There are two types of session management mechanisms for web applications, permissive and strict,
related to session fixation vulnerabilities. The permissive mechanism allow the web application to
initially accept any session ID value set by the user as valid, creating a new session for it, while the strict
mechanism enforces that the web application will only accept session ID values that have been
previously generated by the web application.

Although the most common mechanism in use today is the strict one (more secure), developers must
ensure that the web application does not use a permissive mechanism under certain circumstances.
Web applications should never accept a session ID they have never generated, and in case of receiving
one, they should generate and offer the user a new valid session ID. Additionally, this scenario should be
detected as a suspicious activity and an alert be generated.

Manage Session ID as Any Other User Input

Session IDs must be considered untrusted, as any other user input processed by the web application,
and they must be throroughly validated and verified. Depending on the session management
mechanism used, the session ID will be received in a GET or POST parameter, in the URL or in an HTTP
header (e.g. cookies). If web applications do not validate and filter out invalid session ID values before
processing them, they can potentially be used to exploit other web vulnerabilties, such as SQL injection
if the session IDs are stored on a relational database, or persistent XSS if the session IDs are stored and
reflected back aferwards by the web application.

Renew the Session ID After Any Privilege Level Change

The session ID must be renewed or regenerated by the web application after any privilege level change
within the associated user session. The most common scenario where the session ID regeneration is
mandatory is during the authentication process, as the privilege level of the user changes from the
unauthenticated (or anonymous) state to the authenticated state. Other common scenarios must also
be considered, such as password changes, permission changes or swiching from a regular user role to an
administrator role within the web application. For all these web application critical pages, previous
session IDs have to be ignored, a new session ID must be assigned to every new request received for the
critical resource, and the old or previous session ID must be destroyed.

The most common web development frameworks provide session functions and methods to renew the
session ID, such as “request.getSession(true) & HttpSession.invalidate()” (J2EE), “Session.Abandon() &
Response.Cookies.Add(new...)“ (ASP .NET), or “session_start() & session_regenerate_id(true)” (PHP).

The session ID regeneration is mandatory to prevent session fixation attacks [3], where an attacker sets
the session ID on the victim user web browser instead of gathering the victims session ID, as in most of
the other session-based attacks, and independently of using HTTP or HTTPS. This protection mitigates
the impact of other web-based vulnerabilities that can also be used to launch session fixation attacks,
such as HTTP response splitting or XSS [4].

A complementary recommendation is to use a different session ID or token name (or set of session IDs)
pre and post authentication, so that the web application can keep track of anonymous users and
authenticated users without the risk of exposing or binding the user session between both states.

Copyright © 2011 Taddong S.L. www.taddong.com 8




L] OWASP Session Management Cheat Sheet

Considerations When Using Multiple Cookies

If the web application uses cookies as the session ID exchange mechanism, and multiple cookies are set
for a given session, the web application must verify all cookies (and enforce relationships between
them) before allowing access to the user session.

It is very common for web applications to set a user cookie pre-authentication over HTTP to keep track
of unauthenticated (or anonymous) users. Once the user authenticates in the web application, a new
post-authentication secure cookie is set over HTTPS, and a binding between both cookies and the user
session is established. If the web application does not verify both cookies for authenticated sessions, an
attacker can make use of the pre-authentication unprotected cookie to get access to the authenticated
user session [4].

Session Expiration

In order to minimize the time period an attacker can launch attacks over active sessions and hijack
them, it is mandatory to set expiration timeouts for every session, establishing the amount of time a
session will remain active. Insufficient session expiration by the web application increases the exposure
of other session-based attacks, as for the attacker to be able to reuse a valid session ID and hijack the
associated session, it must still be active.

The shorter the session interval is, the lesser the time an attacker has to use the valid session ID. The
session expiration timeout values must be set accordingly with the purpose and nature of the web
application, and balance security and usability, so that the user can comfortably complete the
operations within the web application without his session frequently expiring. Both the idle and
absolute timeout values are highly dependant on the criticality of the web application and its data.
Common idle timeouts ranges are 2-5 minutes for high-value applications and 15- 30 minutes for low
risk applications.

When a session expires, the web application must take active actions to invalidate the session on both
sides, client and server, being the later the most relevant and mandatory from a security perspective.

For most session exchange mechanisms the client side actions to invalidate the session ID are based on
clearing out the token value. For example, to invalidate a cookie it is recommended to provide an empty
(or invalid) value for the session ID, and set the “Expires” (or “Max-Age”) attribute to a date from the
past (in case a persistent cookie is being used):

Set-Cookie: id=; Expires=Friday, 17-May-03 18:45:00 GMT

In order to close and invalidate the session on the server side, it is mandatory for the web application to
take active actions when the session expires, or the user actively logs out, by using the functions and
methods offered by the session management mechanisms, such as “HttpSession.invalidate()” (J2EE),
“Session.Abandon()“ (ASP .NET) or “session_destroy()/unset()“ (PHP).
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Automatic Session Expiration

Idle Timeout

All sessions should implement an idle or inactivity timeout. This timeout defines the amount of time a
session will remain active in case there is no activity in the session, closing and invalidatin the session
upon the defined idle period since the last HTTP request received by the web application for a given
session ID.

The idle timeout limits the chances an attacker has to guess and use a valid session ID from another
user. However, if the attacker is able to hijack a given session, the idle timeout does not limit the
attacker’s actions, as he can generate activity on the session periodically to keep the session active for
longer periods of time.

Session timeout management and expiration must be enforced server-side. If the client is used to
enforce the session timeout, by using the session token or other client parameters to track time
references (e.g. login time), this data can be manipulated by an attacker to extend the session duration.

Absolute Timeout

All sessions should implement an absolute timeout, regardless of session activity. This timeout defines
the maximum amount of time a session can be active, closing and invalidatin the session upon the
defined absolute period since the given session was initially created by the web application. After
invalidating the session the user is forced to (re)authenticate again in the web application and establish
a new session.

The absolute session limits the amount of time an attacker can use a hijacked session and impersonate
the victim user.

Manual Session Expiration
Web applications should provide mechanisms that allow security aware users to actively close their
session once they have finished using the web application.

Logout Button

Web applications must provide a visible an easily accessible logout (logoff, exit, or close session) button,
available on the web application header or menu, reachable from every web application resource and
page, so that the user can manually close the session at any time.

Web Content Caching

Even after the session has been closed, it might be possible to access the private or sensitive data
exchanged within the session through the web browser cache. Therefore, web applications must use
restrictive cache directives for all the web traffic exchanged through HTTP and HTTPS, such as the
“Cache-Control: no-cache,no-store” and “Pragma: no-cache” HTTP headers [5], and/or equivalent META
tags on all or (at least) sensitive web pages.

Independently of the cache policy defined by the web application, if caching web application contents is
allowed, the session IDs must never be cached, so it is highly recommended to use the “Cache-Control:
no-cache="Set-Cookie"” directive, to allow web clients to cache everything except the session ID.
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Additional Client-Side Defenses for Session Management

Web applications can complement the previously described session management defenses with
additional countermeasures on the client side. Client-side protections, typically in the form of JavaScript
checks and verifications, are not bullet proof and can be easily defeated by a skilled attacker, but
introduce another layer of defense that has to be bypassed by the attacker.

Initial Login Timeout

Web applications can use Javascript code in the login page to evaluate and measure the amount of time
since the page was loaded and a session ID was granted. If a login attempt is tried after a specific
amount of time, the client code can notify the user that the maximum amount of time to log in has
passed and reload again the login page, retrieving a new session ID.

This extra protection mechanism tries to force the renewal of the session ID pre-authentication,
avoiding scenarios where a previously used (or manually set) session ID is reused by the next victim
using the same computer, for example, in session fixation attacks.

Force Session Logout On Web Browser Window Close Events

Web applications can use Javascript code to capture all the web browser tab or window close (or even
back) events and take the appropriate actions to close the current session before closing the web
browser, emulating that the user has manually closed the session throughout the logout button.

Disable Web Browser Cross-Tab Sessions

Web applications can use Javascript code once the user has logged in and a session has been established
to force the user to reauthenticate if a new web browser tab or window is opened against the same web
application. The web application does not want to allow multiple web browser tabs or windows to share
the same session, thus the application tries to force the web browser not to share the same session ID
simultaneously between them.

NOTE: This mechanism cannot be implemented if the session ID is exchanged throughout cookies, as
cookies are shared by all web browser tab/windows.

Session Attacks Detection

Session ID Guessing and Brute Force Detection

If an attacker tries to guess or brute force a valid session ID he needs to launch multiple sequential
requests against the target web application using different session IDs from a single (or set of) IP
address(es). Additionally, if an attackers tries to analyze the predictability of the session ID (e.g. using
statistical analysis), he needs to launch multiple sequential requests from a single (or set of) IP
address(es) against the target web application to gather new valid session IDs.

Web applications must be able to detect both scenarios based on the number of attempts to gather (or
use) different session IDs and alert and/or block the offending IP address(es).

Detecting Session ID Anomalies

Web applications should focus on detecting anomalies associated to the session ID, such as its
manipulation. The OWASP AppSensor Project [7] provides a framework and methodology to implement
built-in intrusion detection capabilities within web applications focused on the detection of anomalies
and unexpected behaviors, in the form of detection points and response actions. Instead of using
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external protection layers, sometimes the business logic details and advanced intelligence are only
available from inside the web application, where it is possible to establish multiple session related
detection points, such as when an existing cookie is modified or deleted, a new cookie is added, the
session ID from another user is reused, or when the user location or User-Agent changes in the middle
of a session.

Binding the Session ID to Other User Properties

With the goal of detecting user misbehaviors and session hijacking, it is highly recommended to bind the
session ID to other user or client properties, such as the client IP address, User-Agent, or client-based
digital certificate. If the web application detects any change or anomaly between these different
properties in the middle of an established session, it is a very good indicator of session manipulation and
hijacking attempts, and this simple fact can be used to alert and/or terminate the suspicious session.

Although these properties cannot be used by web applications to trustily defend against session attacks,
they significantly increase the web application detection capabilities. A skilled attacker can bypass these
controls by reusing the same IP address assigned to the victim user by sharing the same network (very
common in NAT environments, like Wi-Fi hotspots), or by using the same outbound web proxy (very
common in corporate environments), or can modify his User-Agent to look exactly as the victim user
one.

Logging Sessions Life Cycle: Monitoring Creation, Usage, and Destruction of Session

IDs

Web applications should increase their logging capabilities by including information regarding the full
life cycle of sessions. In particular, it is recommended to record session related events, such as the
creation, renewal, and destruction of session IDs, as well as details about its usage within login and
logout operations, privilege level changes within the session, timeout expiration, invalid session
activities (when detected), and critical business operations during the session.

The log details might include a timestamp, source IP address, web target resource requested (and
involved in a session operation), HTTP headers (including the User-Agent and Referer), GET and POST
parameters, error codes and messages, username (or user ID), plus the session ID (cookies, URL, GET,
POST...). Sensitive data including the session ID should not be included in the logs in order to protect the
session logs against session ID local or remote disclosure or unauthorized access. However, some kind of
session-specific information must be logged into order to correlate log entries to specific sessions. It is
recommended to log a salted-hash of the session ID instead of the session ID itself in order to allow for
session-specific log correlation without exposing the session ID.

The session logs become one of the main web application intrusion detection data sources, and can also
be used by intrusion protection systems to automatically terminate sessions and/or disable user
accounts when (one or many) attacks are detected. If active protections are implemented, these
defensive actions must be logged too.

Simultaneous Session Logons

It is the web application design decision to determine if multiple simultaneous logons from the same
user are allowed, from the same or from different client IP addresses. If the web application does not
want to allow simultaneous session logons, it must take effective actions after each new authentication
event, implicitly terminating the previously available session, or asking the user (through the old, new or
both sessions) about the session that must remain active.
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It is recommended for web application to add user capabilities to check the details of active sessions at
any time, monitor and alert the user about concurrent logons, provide user features to remotely
terminate sessions manually, and track account activity history (logbook) by recording multiple client
details such as IP address, User-Agent, login date and time, idle time, etc.

Session Management WAF Protections

There are situations where the web application source code is not available or cannot be modified, or
when the changes required to implement the multiple security recommendations and best practices
detailed above imply a full redesign of the web application arquitecture, and therefore, cannot be easily
implemented in the short term. In these scenarios, or to complement the web application defenses, and
with the goal of keeping the web application as secure as possible, it is recommended to use external
protections such as Web Application Firewalls (WAFs) that can mitigate the session management threats
already described.

Web Application Firewalls offer detection and protection capabilities against session based attacks. On
the one hand, it is trivial for WAFs to enforce the usage of security attributes on cookies, such as the
“Secure” and “HttpOnly” flags, applying basic rewritting rules on the “Set-Cookie” header for all the web
application responses that set a new cookie. On the other hand, more advanced capabilities can be
implemented to allow the WAF to keep track of sessions, and the corresponding session IDs, and apply
all kind of protections against session fixation (by renewing the session ID on the client-side when
privilege changes are detected), enforcing sticky sessions (by verifying the relationship between the
session ID and other client properties, like the IP address or User-Agent), or managing session expiration
(by forcing both the client and the web application to finalize the session).

The open-source ModSecurity WAF, plus the OWASP Core Rule Set [6], provides capabilities to detect
and apply security cookie attributes, countermeasures agains session fixation attacks, and session
tracking features to enforce sticky sessions.
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